
Tracking and Smoothing of Time-Varying Sparse
Signals via Approximate Belief Propagation

Justin Ziniel, Lee C. Potter, and Philip Schniter
Dept. of ECE, The Ohio State University, Columbus, OH 43210. (Email: {zinielj, potter, schniter}@ece.osu.edu)

Abstract—This paper considers the problem of recovering
time-varying sparse signals from dramatically undersampled
measurements. A probabilistic signal model is presented that
describes two common traits of time-varying sparse signals: a
support set that changes slowly over time, and amplitudes that
evolve smoothly in time. An algorithm for recovering signals that
exhibit these traits is then described. Built on the belief prop-
agation framework, the algorithm leverages recently developed
approximate message passing techniques to perform rapid and
accurate estimation. The algorithm is capable of performing both
causal tracking and non-causal smoothing to enable both online
and offline processing of sparse time series, with a complexity that
is linear in all problem dimensions. Simulation results illustrate
the performance gains obtained through exploiting the temporal
correlation of the time series relative to independent recoveries.

I. INTRODUCTION

In this work we consider the problem of recovering a
time series of sparse signals, {x(0),x(1), . . . ,x(T )}, from an-
other time series of undersampled noisy linear measurements,
{y(0),y(1), . . . ,y(T )}. Such a problem is sometimes referred
to in compressive sensing (CS) literature as a dynamic CS
problem. We assume y(t) ∈ CM is obtained through the linear
measurement process

y(t) = A(t)x(t) + e(t), (1)

with x(t) ∈ CN , and M < N . We assume A(t) ∈ CM×N
is a complex-valued measurement matrix known in advance,
and that its columns have been scaled to be of unit-norm.
As in other CS literature, we assume that if the underlying
signal being measured is not itself sparse, a sparsifying basis
Ψ has been incorporated into A(t) such that x(t) is the sparse
representation of the underlying signal in the basis Ψ. A
complex-valued, stationary random noise process corrupts the
measurements, and is modeled as being circular symmetric
Gaussian, i.e., e(t) ∼ CN (0, σ2

eIM
), where I

M
denotes an

identity matrix of size M ×M .
Recently developed methods of solving the dynamic CS

problem have been able to outperform traditional CS meth-
ods by leveraging one or both of the following empirically
observed properties of a large class of time-varying sparse
signals: (1) the support sets of the signals change slowly over
time, and (2) the amplitudes of the non-zero, or “active”,
coefficients vary smoothly in time, with few abrupt changes
[1]–[5].
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In this work, we present a novel approach for recovering
time-varying sparse signals that exhibit both of the afore-
mentioned properties. In order to perform principled inference
according to our signal model, we develop an iterative algo-
rithm based on the belief propagation (BP) methodology [6].
We believe this approach offers several contributions to the
dynamic CS literature. First, to the best of our knowledge,
ours is the only method which is capable of performing
both tracking, in which measurements arrive in a sequential
fashion and x(t) is recovered using only {y(0), . . . ,y(t)},
and smoothing, in which x(t) is recovered using all available
measurements, {y(t)}Tt=0. This makes our approach suitable
for both online and offline processing. Second, our method
offers a complexity that is linear in all problem dimensions:
O(MNT ). This low complexity burden leads to rapid infer-
ence, enabling our method to be applied to large problems
while requiring little more than simple matrix-vector products.
Third, we offer empirical evidence that our approach is capable
of performing near-optimal estimation of signals matched to
our signal model by comparing our performance against a
genie-aided scheme that bounds the achievable minimum mean
square error (MMSE) performance.

II. SIGNAL MODEL

In order to precisely characterize the temporal correlation of
the time-varying signals we wish to recover, we adopt a prob-
abilistic signal model, treating the temporal evolution of the
signal support as a discrete Markov process, and the temporal
variation of coefficient amplitudes as a Gauss-Markov process.
We do so by introducing two additional hidden time series
that are independent of one another, {s(t)}Tt=0 and {θ(t)}Tt=0.
The binary vector s(t) is used to indicate the support of x(t),
denoted S(t), while the complex-valued vector θ(t) describes
the amplitudes of the active coefficients. Together, s(t) and
θ(t) completely characterize x(t) in the following manner:

x(t)n = s(t)n · θ(t)n , (2)

where s(t)n ∈ {0, 1}, and θ(t)n ∈ C. Thus, when s(t)n = 0, x(t)n
is inactive, (i.e., n /∈ S(t)), and when s(t)n = 1, x(t)n = θ

(t)
n .

To model slow changes in the signal support over time,
we treat the time series {s(t)}Tt=0 as a first-order Markov
process in which s(t)n is conditionally independent of all other
support variables, given s

(t−1)
n , (t > 0). The prior distribu-

tion of the supports is fully characterized by two Markov
transition probabilities, p10 , Pr{s(t)n = 1|s(t−1)n = 0} and



p01 , Pr{s(t)n = 0|s(t−1)n = 1}, and a distribution for the
initial timestep. We treat {s(0)n }Nn=1 as independent Bernoulli
random variables, and define

⇀

λn0 , Pr{s(0)n = 1}, with
⇀

λn0
chosen small to favor sparse solutions. Depending on how p10
and p01 are chosen, the prior distribution can favor signals that
exhibit a static support across time, or can allow for signal
supports that change rapidly over time.

To model the smooth variations of active coefficient ampli-
tudes across time, we adopt a Gauss-Markov process in which
the amplitude of each coefficient evolves in time independently
from all other coefficients according to

θ(t)n = (1− α)θ(t−1)n + αw(t)
n , (3)

where w(t)
n ∼ CN (0, ρ) is an independent circular Gaussian

driving process. The scalar α ∈ [0, 1] controls the temporal
correlation of the active coefficient amplitudes. At one ex-
treme, α = 0, the amplitudes remain static across time, i.e.,
θ
(t)
n = θ

(t−1)
n . At the other extreme, α = 1, the amplitudes

evolve according to an uncorrelated Gaussian random process,
and knowledge of a coefficient’s amplitude at one timestep
provides no information about its amplitude at subsequent
timesteps. We model the distribution of amplitudes at the
initial timestep as Gaussian, θ(0) ∼ CN (0, σ2I

N
).

III. AN ALGORITHM FOR ESTIMATING SPARSE
TIME-EVOLVING SIGNALS

In this section we will provide a high level description
of an algorithm that efficiently and accurately recovers the
unknown time series {x(t)}Tt=0 from the observed measure-
ments {y(t)}Tt=0. By defining ȳ to be the collection of all
measurements, {y(t)}Tt=0, (and defining x̄, s̄, and θ̄ similarly),
the posterior joint distribution of the signals, supports, and
amplitudes, given the time series of measurements, can be
expressed using Bayes rule as

p
(
x̄, s̄, θ̄

∣∣ȳ
)
∝ p
(
ȳ
∣∣x̄
)
p
(
x̄
∣∣s̄, θ̄

)
p
(
s̄
)
p
(
θ̄
)
, (4)

where ∝ indicates proportionality up to a constant scale factor.
From (1),

p
(
ȳ
∣∣x̄
)

=

T∏

t=0

M∏

m=1

CN
(
y(t)m ;aH (t)

m x(t), σ2
e

)
, (5)

where aH (t)
m is the mth row of A(t). Furthermore, (2) implies

that

p
(
x̄
∣∣s̄, θ̄

)
=

T∏

t=0

N∏

n=1

δ
(
x(t)n − s(t)n θ(t)n

)
, (6)

where δ(·) is the Dirac delta function. Together with our
characterization of p

(
s̄
)

and p
(
θ̄
)

from Section II, we see
that the terms of (4) and their constituent sub-terms enable
the posterior joint pdf to be factored into products of many
pdfs that involve small collections of variables. A convenient
graphical representation of a joint distribution that decomposes
in such a way is given by a factor graph. The factor graph
for the joint distribution of (4) is shown in Fig. 1. As seen in
the figure, all of the variables needed at a given timestep can
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Fig. 1. Factor graph of the time series of sparse signals.

Factor pdf/pmf
d
(0)
n (θ

(0)
n ) CN (θ

(0)
n ; 0, σ2)

d
(t)
n (θ

(t)
n , θ

(t−1)
n ) CN (θ

(t)
n ; (1− α)θ(t−1)

n , α2ρ)

g
(t)
m (x(t)) CN (y

(t)
m ;a

H (t)
m x(t), σ2

e)

f
(t)
n (x

(t)
n , s

(t)
n , θ

(t)
n ) δ(x

(t)
n − s

(t)
n θ

(t)
n )

h
(0)
n (s

(0)
n ) Bernoulli(

⇀

λn0)

h
(t)
n (s

(t)
n , s

(t−1)
n ) Markov

([
1− p10 p10
p01 1− p01

])
TABLE I

THE FACTORS AND CORRESPONDING PDFS/PMFS OF FIG. 1

be visualized as lying in a plane, with planes representing
consecutive timesteps stacked one after another. We refer
to these planes as “frames”. The solid square factor nodes
represent the various pdf (and pmf) “factors” that compose
the joint distribution of (4). Each factor node is connected to
the circular variable nodes upon which the corresponding pdf
depends. The specific distributions that correspond to each of
the factor nodes are summarized in Table I for both the initial
timestep (t = 0) and all subsequent timesteps (t = 1, . . . , T ).

The temporal correlation of the signal supports is shown by
the h(t)n factor nodes connecting s

(t)
n variable nodes between

neighboring frames. Likewise, the temporal correlation of
the signal amplitudes is expressed by the d

(t)
n factor nodes

connecting θ
(t)
n variable nodes between neighboring frames.

For visual clarity these factor nodes have been omitted from
the middle portion of Fig. 1, appearing only at n = 1 and
n = N , but in actuality they are present for all n = 1, . . . , N .

The algorithm we develop is based on the popular belief
propagation (BP) approach to performing inference on factor
graphs. BP proscribes a set of rules that are used to charac-
terize the pdfs and pmfs, or “messages”, that pass between
connected nodes of the factor graph [6]. In what follows, we
use the notation νa→b(·) to denote a message that is passing
from node a to a connected node b. As a brief tutorial on BP,
we offer the following two rules that govern how messages
are computed: i) an outgoing message from a variable node



along a given edge is the normalized product of the incoming
messages to that node from all other edges, and ii) an outgoing
message from a factor node along a given edge consists
of the normalized integral (or sum) of the product of the
local constraint function, (e.g., d(t)n , f

(t)
n , etc.), and incoming

messages on all other connected edges. The normalizations
involved ensure that the outgoing pdfs and pmfs are valid,
i.e., integrate or sum to one.

A. Message scheduling

There are a number of ways to schedule, or sequence, the
messages that are passed through the factor graph. Here, we
describe one straightforward method that empirically yields
rapid convergence of the signal estimates. For convenience,
we will focus only on the messages pertaining to a single
coefficient index, n, with the understanding that N such
messages would in fact be moving in parallel. Beginning at
timestep t = 0 we compute ν

s
(0)
n →f(0)

n
(·) and ν

θ
(0)
n →f(0)

n
(·),

i.e., the messages from s
(0)
n and θ(0)n that are moving leftward,

or further into frame 0. These messages in turn depend on
the messages originating from the h(0)n and d(0)n factor nodes,
which can be thought of as providing the priors on s

(0)
n and

θ
(0)
n . Then, the message ν

f
(0)
n →x(0)

n
(·) is scheduled, followed

by multiple iterations of the messages {ν
x
(0)
n →g(0)m

(·)}Mm=1

and {ν
g
(0)
m →x(0)

n
(·)}Mm=1. Afterwards, messages begin moving

rightward out of frame 0, beginning with ν
x
(0)
n →f(0)

n
(·), fol-

lowed by ν
f
(0)
n →s(0)n

(·) and ν
f
(0)
n →θ(0)n

(·). These latter outbound
messages can be thought of as yielding updates to the posterior
distributions of s(0)n and θ

(0)
n , given the observations y(0).

These updated posterior distributions are in turn used to set
the priors for s(1)n and θ(1)n at frame 1 by passing the messages
ν
s
(0)
n →h(1)

n
(·), ν

h
(1)
n →s(1)n

(·), ν
θ
(0)
n →d(1)n

(·), and ν
d
(1)
n →θ(1)n

(·).

Then, just as before, messages move from s
(1)
n and θ

(1)
n

leftward further into frame 1. Subsequently, messages moving
out of frame 1 are used to set the priors on s

(2)
n and θ

(2)
n .

Continuing in this manner, messages are propagated forward
in time until the last timestep, t = T , is reached.

If one wishes to perform tracking, the algorithm can be
terminated at this point, as until now it has only made use of
sequentially arriving measurements to obtain causal estimates
of {x(t)}Tt=0. If instead one wishes to perform smoothing,
using all available measurements to guide the reconstruction
of each x(t), one continues as follows. Outgoing messages
from frame T are now propagated backwards in time, i.e., the
messages ν

s
(T )
n →h(T )

n
(·), ν

h
(T )
n →s(T−1)

n
(·), ν

θ
(T )
n →d(T )

n
(·), and

ν
d
(T )
n →θ(T−1)

n
(·) are transmitted. Messages are then passed into

and out of the frames in a descending order, updating the
priors from the antecedent timesteps until frame 0 is reached.
At this point we have completed what we term a single
forward/backward pass. Multiple forward/backward passes,
indexed by the variable k, can be carried out until convergence
in the estimates {x̂(0), . . . , x̂(T )}k of the time series occurs,
thereby implementing a smoother.

B. Implementation of the message passes

Space constraints prevent us from providing a detailed
derivation of the various messages that must be passed in the
factor graph of Fig. 1, however some high-level remarks are
in order. First, we point out that our choice of p

(
s̄
)

and p
(
θ̄
)

in Section II result in a Bernoulli-Gaussian prior on x(t)n :

p(x(t)n ) = (1− γ(t)n )δ(x(t)n ) + γ(t)n CN (x(t)n ; 0, τ (t)n ), (7)

where γ
(t)
n and τ

(t)
n are determined from the signal model

parameters. If we were to follow the standard BP rules to
compute the messages that pass between the {x(t)n } and {g(t)m }
nodes, we would need to evaluate numerous multidimensional
integrals at every iteration due to the dense number of in-
terconnections between these nodes. Even more onerous, the
number of integrals that would need to be evaluated grows
exponentially in M and N .

In order to circumvent this difficulty, we turn to a recently
developed technique known as approximate message passing
(AMP) [7]. AMP, like belief propagation, is not a single
algorithm, but rather a framework for constructing algorithms
tailored to specific problem setups. The technique leverages
two important assumptions in order to drastically simplify
the resultant message passing algorithm. First, the message
ν
g
(t)
m →x(t)

n
(·), which is a function of the product of many non-

Gaussian messages, can be well approximated as a Gaussian
pdf by applying central limit theorem arguments in the large
system limit (i.e., M , N →∞ with M/N fixed). Approximat-
ing this message as a Gaussian bypasses the need to evaluate
multidimensional integrals, and allows one to simply track
the means and variances of the messages {ν

x
(t)
n →g(t)m

(·)}Nn=1.
The second key assumption, which draws on ideas from the
field of statistical physics, is that the many messages leaving a
g
(t)
m factor node are nearly identical, and can be approximated

as such, provided a small but important “correction” term is
included in the message computation. As a result of these
two assumptions, AMP is able to reduce the number of
messages that must be tracked from O(MN) to O(N), and
the complexity of computing the messages reduces to O(MN)
multiply-and-accumulate operations at each timestep, in the
form of matrix-vector products. Additionally, it has recently
been shown that AMP enjoys certain theoretical guarantees as
well, providing exact posterior distributions in the large system
limit, for random Gaussian sensing matrices [8].

We enclosed in a dashed box in Fig. 1 those portions
of the factor graph in which we take advantage of AMP
approximations of the true BP messages. The AMP messages
we use can be shown to be generalizations of the messages de-
rived in [9], which also considered a Bernoulli-Gaussian prior.
Using AMP, we are able to characterize all of our messages
using a collection of scalar variables, e.g., means, variances,
and activity probabilities, which suffice for parameterizing
complete distributions. In Fig. 2 we provide a summary of the
various messages that pertain to a particular coefficient index
n at an intermediate timestep t, as well as the notation that
we use for the scalar variables that parameterize the messages.
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Fig. 2. A summary of the notation and form of messages moving through
the factor graph of Fig. 1.

Large arrows indicate the direction that messages are moving.
Certain edges only show arrows moving in one direction.
In such cases, the messages along “missing” directions can
be found implicitly using the provided quantities. Finally, in
Table II, we provide pseudo-code for implementing either the
tracking version of our algorithm, or the forward portion of a
forward/backward smoothing pass.

IV. EMPIRICAL STUDY

As an illustration of the performance of our proposed
algorithm, we begin by exhibiting the result of recovering
a time-varying sparse signal using three different recovery
methods. As a means of obtaining a “gold standard” recovery,
we implemented a support-aware Kalman smoother (SKS)1

which, given perfect knowledge of the time-varying support
of the true signal, provides an optimal MMSE estimate of
the time series [10]. In order to implement the appropriate
Kalman smoother for our signal model, we leveraged the fact
that Kalman filtering/smoothing can be viewed as Gaussian
message passing on a factor graph that describes a linear state-
space model [10].

In addition to the SKS and our proposed method, we
implemented an approximate BP algorithm that performs
independent recoveries at each timestep (termed “independent
AMP”), as well as a timestep-independent Lasso recovery
algorithm with genie-aided parameter tuning. Implementing
these two additional schemes that do not take advantage of
temporal correlation enables us to quantify the improvement
gains possible by exploiting correlation in the time series. In
Fig. 3, we plot the real part of a single coefficient across
T = 50 timesteps, along with the real part of the recovery
for each of the three methods under consideration. The signal
model parameters for the test were N = 256, M = 32,
⇀

λn0 = 0.10∀n, p01 = 0.05 α = 0.01, σ2 = 1, and a noise
variance, σ2

e , chosen to yield an average per-measurement
signal-to-noise ratio (SNR) of 15 dB. The entries of A(t)

were drawn i.i.d. from CN (0, 1) and then scaled to yield unit-
norm columns. The remaining parameters, p10 and ρ, were

1To the best of our knowledge, an SKS has previously been developed only
for the special case of time-invariant supports, (see [4]), making its extension
to the time-varying support case a useful contribution to the literature in its
own rite.

% Define important thresholding functions:

Fn(φ; c) , (1 + γn(φ; c))−1
(↼
ψ

(t)
n φ+

↼
ξ
(t)
n c

↼
ψ

(t)
n +c

)
(D1)

Gn(φ; c) , (1 + γn(φ; c))−1
( ↼
ψ

(t)
n c

↼
ψ

(t)
n +c

)
+ γn(φ; c)|Fn(φ; c)|2 (D2)

F′n(φ; c) =
1
c

Gn(φ; c) (D3)

γn(φ; c) ,
(

1−↼π(t)
n

↼
π
(t)
n

)(↼
ψ

(t)
n +c
c

)
× exp

(
−
[↼
ψ

(t)
n |φ|2+

↼
ξ
(t) ∗
n cφ+

↼
ξ
(t)
n cφ∗−c|

↼
ξ
(t)
n |2

c(
↼
ψ

(t)
n +c)

])
(D4)

% Inputs from previous forward/backward pass:
{
⇀

λ
(0)
n }Nn=1, {{

↼

λ
(t)
n }Nn=1}

T−1
t=0 , {

⇀
η
(0)
n }Nn=1,

{{↼η(t)n }Nn=1}
T−1
t=0 , {

⇀
κ
(0)
n }Nn=1, {{

↼
κ
(t)
n }Nn=1}

T−1
t=0 ,

% begin passing messages . . .
for t = 0, . . . , T, ∀n :

% pass messages from s
(t)
n and θ(t)n to f (t)n . . .

↼
π
(t)
n =

⇀
λ
(t)
n ·

↼
λ
(t)
n

(1−
⇀
λ
(t)
n )·(1−

↼
λ
(t)
n )+

⇀
λ
(t)
n ·

↼
λ
(t)
n

(A1)

↼

ψ
(t)
n =

⇀
κ
(t)
n ·

↼
κ
(t)
n

⇀
κ
(t)
n +

↼
κ
(t)
n

(A2)

↼

ξ
(t)
n =

↼

ψ
(t)
n ·

(⇀
η
(t)
n

⇀
κ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)
(A3)

% initialize AMP-related variables . . .
∀m : z1m = y

(t)
m , ∀n : µ1n = 0, and c1 = 100 ·

∑N
n=1 ψ

(t)
n

% pass I rounds of messages between the x(t)n and g(t)m nodes . . .
for i = 1, . . . , I, ∀n,m :

φin =
∑M
m=1 A

∗ (t)
mn z

i
m + µin (A4)

µi+1
n = Fn(φin; c

i) (A5)
vi+1
n = Gn(φin; c

i) (A6)
ci+1 = σ2

e + 1
M

∑N
n=1 v

i+1
n (A7)

zi+1
m = y

(t)
m − a

H (t)
m µi+1 +

zim
M

∑N
n=1 F′n(φ

i
n; c

i) (A8)
end
x̂
(t)
n = µI+1

n % store current estimate of x(t)n (A9)
% now pass messages from f

(t)
n out to s(t)n and θ(t)n . . .

⇀
π
(t)
n =

(
1 +

( ↼
π
(t)
n

1−↼π(t)
n

)
γn(φIn; c

I+1
n )

)−1
(A10)

⇀

ξ
(t)
n =

{
φIn/ε,

↼
π
(t)
n ≤ 0.99

φIn, o.w.
ε� 1 (A11)

⇀

ψ
(t)
n =

{
cI+1
n /ε2,

↼
π
(t)
n ≤ 0.99

cI+1
n , o.w.

ε� 1 (A12)

% pass messages out of frame t, and forward to frame t+ 1 . . .
⇀

λ
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⇀
λ
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n )(1−⇀π(t)

n )+(1−p01)
⇀
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n

⇀
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(t)
n
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⇀
λ
(t)
n )(1−⇀π(t)
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⇀
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n

⇀
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end

TABLE II
IMPLEMENTATION OF A SINGLE FORWARD PASS

set based on the above parameters such that the number of
active coefficients and the variance of the active coefficients
would, in expectation, remain fixed across time. Our choice
of parameters therefore implies that there are on average
only 1.25 measurements-per-active-coefficient. In the realm of
traditional CS, this ratio falls well short of the rule-of-thumb of
3-4 measurements-per-active-coefficient, and as evidenced in
Fig. 3, the independent AMP and Lasso approaches are unable
to accurately estimate the signal. In contrast, both the SKS
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Fig. 3. Sample trajectory of a single coefficient across time.

and our algorithm are able to accurately track the coefficient’s
trajectory, even when it transitions between being active and
inactive.

To better understand the average performance of our algo-
rithm under a variety of test conditions, we empirically evalu-
ated mean-squared error (MSE) performance on the sparsity-
undersampling plane, calculating MSE at various combina-
tions of the normalized sparsity ratio, β (i.e., # of non-
zero coefficients to # of measurements), and undersampling
ratio, δ (i.e., # of measurements to # of unknowns). In
particular, for each pair (δ, β), results were averaged over
more than 500 independent signal realizations, and for each
realization we computed the time-averaged normalized MSE,
TNMSE , 1

T+1

∑T
t=0

‖x(t)−x̂(t)‖22
‖x(t)‖22

, where x̂(t) represents a
given algorithm’s estimate of x(t). Upon computing the
realization-averaged TNMSE performance in dB at each (δ, β)
pair for the SKS, our proposed approach, and the independent
AMP method, we calculated the number of dB by which our
method and the independent AMP method exceeded the SKS.
In Fig. 4 we have plotted iso-dB contours for a signal model
with N = 512, a per-measurement SNR of 15 dB, p01 = 0.05,
α = 0.01, (M,

⇀

λ0, p10) set based on specific (δ, β) pairs, and
remaining parameters set as before. To provide an absolute
frame of reference, the worst (largest) TNMSE achieved by
the SKS over the entire plane was -17 dB, an impressive
performance. We do not include comparisons against the
independent Lasso approach as we found it performed worse
than independent AMP for all of the signals we considered.
The advantages of our approach as compared with independent
AMP are clearly seen; accounting for the temporal structure
of the signal allows us to perform within only a few dB of the
SKS over the entire sparsity-undersampling plane. In contrast,
independent AMP is more than 10 dB away from the SKS
over a substantial portion of the plane.

V. CONCLUSION

In this work we proposed a novel method for recover-
ing time-varying sparse signals that have support sets and
amplitudes that evolve slowly over time. We characterized
these signals within a probabilistic framework, and described a
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Fig. 4. Difference in TNMSE (in dB) between the SKS and our proposed
approach (left) and the independent AMP method (right).

technique for making inferences within this framework that is
based on message passing in factor graphs. This technique
allows us to rapidly perform both tracking and smoothing
with a complexity that is linear in all problem dimensions.
In order to have a reference scheme to compare our algo-
rithm’s performance against, we implemented a support-aware
Kalman smoother for our signal model. Numerical results
demonstrated that our method can perform comparably to
the Kalman smoother over a much wider range of signal
configurations than a traditional CS approach can. Encouraged
by these findings, our future efforts will be directed at mod-
eling the additional spatio-temporal structure evident in many
time-varying signals, and developing principled methods for
learning the parameters of our signal model when they are
not perfectly known.
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