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Setup:

• Single-antenna downlink with K users

• OFDMA with N subchannels

• Channels are Markov time-varying with L taps

• ACK/NAK feedback from previously scheduled users
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The Basic Resource Allocation Problem:

• At each time t, we want to schedule the ”best” users (multiuser

diversity) to their ”best” subchannels (frequency diversity).

• We also want to optimize the powers and data-rates of assigned users.

• To make informed choices, we need channel state information (CSI).

• Feedback of each user’s CSI about each subchannel is very costly!

Is it possible to do near-optimal resource allocation using only ACK/NAK

feedback from previously scheduled users?

Can we learn enough about the CSI from such limited feedback?
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Detailed Objective:

At each time t and subchannel n, choose each user k’s next...

• rate rn,k,t+1 ∈ {1, . . . , M},

• power pn,k,t+1 ≥ 0,

based on ACK/NAK feedback F t
1, to maximize the total future utility

GT
t+1 =

T∑

τ=t+1

K∑

k=1

E

{
N∑

n=1

U
( (

1 − ǫrn,k,τ
(γn,k,τ , pn,k,τ )

)
rn,k,τ

︸ ︷︷ ︸

goodput from k on n at τ

)
∣
∣
∣
∣
∣
F t

1

}

subject to the power constraint
∑

n,k

pn,k,τ ≤ Pmax, ∀τ,

and subject to a one-user-per-subchannel constraint.

Here, ǫr(γ, p) is packet error rate and U(·) is a concave utility function.
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Optimal ACK/NAK-based Resource Allocation:

• Notice that the current resource allocation affects not only the

immediate utility, but also the subsequent ACK/NAK feedback, and

hence the future utilities.

• Intuitions:

– if we assign transmission params that are very likely to yield ACKs,

we will learn very little about the changing CSI! (Ã “exploitation”)

– if we assign transmission params to best inform us of CSI, the

expected utility will be low. (Ã “exploration”)

Classic tradeoff: exploration vs exploitation.

• The optimal allocator is a partially observable Markov decision process

(POMDP), at least in the simpler case of a finite set of powers.

POMDP complexity is impractically high, however, forcing us to

consider a suboptimal approach.
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Greedy Resource Allocation:

• For ACK/NAK-based rate adaptation in the single-user single-channel

case, we previously found that greedy adaptation is nearly optimal (at

practical fading rates):

R. Aggarwal, P. Schniter, and C. E. Koksal, “Rate Adaptation via Link-Layer

Feedback for Goodput Maximization over a Time-Varying Channel,” IEEE

Transactions on Wireless Communications, Aug. 2009.

• Thus, we propose to use greedy resource allocation for our multi-user

multi-channel problem.
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The Greedy Resource-Allocation Problem:

Using the indicator In,m,k,t ∈ {0, 1} to denote time-t assignment of

subchannel n to user k at MCS index m, the time-t problem becomes

max

In,k,m,t+1∈{0,1}

pn,k,m,t+1≥0

∑

k

E

{
∑

n,m

U
(

In,k,m,t+1(1 − ame−bmpn,k,m,t+1γn,k,t+1)rm

)
∣
∣
∣
∣
F t

1

}

subject to
∑

n,k,m

In,k,m,t pn,k,m,t ≤ Pmax, ∀t,

and
∑

k,m

In,k,m,t ≤ 1, ∀n, ∀t,

where

• γn,k,t is SNR of user k at subchannel n at time t,

• (am, bm, rm) determine data rate and error rate for MCS index m

• F t
1 collects all ACK/NAK feedbacks collected from times 1 to t.

7



Phil Schniter The Ohio State University'

&

$

%

Greedy Allocation — Practical Approximation:

Say that we relax the binary indicators to Ĩn,m,k,t ∈ [0, 1].

Then the KKT conditions become (suppressing the time-t notation):

∀n, k, m, µ = ambmrm E{γn,ke
−bmpn,k,mγn,k | F } (1)

∀n, k, m, λn = rm E{1 − ame−bmpn,k,mγn,k | F } − µpn,k,m (2)

where {λn}
N
n=1 and µ are Lagrange multipliers. A practical alg is then:

1. Initialize µ at a small value.

2. For each subchannel n,

• For each (k, m). . .

– calculate pn,k,m from (1) with Ĩn,k,m = 1, forcing pn,k,m ≥ 0.

– plug pn,k,m into (2) and calculate the corresponding λn(k, m).

• Find (k∗, m∗) = arg max(k,m) λn(k, m).

• Set In,k∗,m∗ = 1 and In,k,m|(k,m)6=(k∗,m∗) = 0.

3. If
∑

n pn,k∗,m∗ > Pmax, increase µ and repeat, else stop.
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Example Performance of Greedy Approximation:

N K M greedy goodput approximation

1 3 9 5.9884 5.988

1 5 9 6.3501 6.3499

2 3 9 10.3251 10.3249

2 5 9 10.9778 10.9774

3 3 9 14.0573 14.0571

3 5 9 14.9653 14.9651

The practical approximation yields 99.99% of the goodput attained

by the true greedy scheme.
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Tracking the SNR distribution:

The greedy allocator tracks the SNR by updating the SNR distributions

p(γn,k,t+1 | F t
1), ∀ users k and subchannels n.

The SNR evolves as follows:

• Markov evolution of time-domain channel taps:

hl,k,t+1 = (1 − α)hl,k,t + αwl,k,t, wl,k,t ∼ CN (0, 1),

• subchannel gains as a function of time-domain channel taps:

Hn,k,t =
L−1∑

l=0

hl,k,te
−j 2π

N
nk,

• subchannel SNRs as a function of subchannel gains:

γn,k,t = K|Hn,k,t|
2.
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Tracking the SNR distribution (cont.):

SNR tracking can be done as follows:

p(γn,k,t+1 | F t
1) =

∫

hk,t+1

p(γn,k,t+1 | hk,t+1)
︸ ︷︷ ︸

(approx of) Dirac delta

p(hk,t+1 | F t
1) (3)

p(hk,t+1 | F t
1) =

∫

hk,t

p(hk,t+1 | hk,t)
︸ ︷︷ ︸

Markov prediction

p(hk,t | F t
1) (4)

p(hk,t | F t
1) =

p(fk,t | hk,t)p(hk,t | F t−1
1 )

∫

h
′

k,t

p(fk,t | h′
k,t)p(h′

k,t | F t−1
1 )

(Bayes rule) (5)

p(fk,t | hk,t) =
N∏

n=1

p(fn,k,t | γn,k,t(hk,t)) (6)

p(fn,k,t = f | γn,k,t) =







∑

m In,k,m,tame−bmpn,k,m,tγn,k,t f = 0
∑

m In,k,m,t(1 − ame−bmpn,k,m,tγn,k,t) f = 1

1 −
∑

m In,k,m,t f = ∅

(7)
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Tracking the SNR distribution (cont.):

Thus, for each user k,

1. measure feedbacks f k,t across all subchannels,

2. compute p(fn,k | γn,k,t(hk,t)) on h-lattice using error-rate rules (6)-(7),

3. compute p(hk,t | F t
1) on h-lattice by updating previous posterior via (5),

4. compute p(hk,t+1 | F t
1) on h-lattice via Markov-prediction step (4),

5. compute p(γk,t+1 | F t
1) on γ-lattice via h-to-γ conversion step (3).

This costs O
(
KNQL

h + KLQL+1
h + KNQγQ

L
h

)
, where

Qh = number of grid points used per dimension of h-lattice,

Qγ = number of grid points used per dimension of γ-lattice.
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Numerical Experiments:

Setup: K = 2 users

N = 2 subchannels

L = 2 time-domain channel taps

E{γn,k,t} = 25dB= 330 mean subchannel SNR

α ∈ {0.01, 0.001, 0.0001} channel fading rate

ρ = 0.33 subchannel correlation

Plots show (versus packet index t):

• goodput of

– approximate-greedy with genie-aided CSI

– approximate-greedy with tracked CSI

– approximate-greedy with prior CSI (and round robin)

• power/rate/user of approximate-greedy with tracked CSI
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Goodput for α = 0.0001:
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genie−CSI avg = 11.494
tracked−CSI avg = 11.3354
prior−CSI avg = 6.6481
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Allocations for α = 0.0001:
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Goodput for α = 0.001:
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2 users, 2 subcarrier, α = 1e−3, 200 packets

 

 

genie−aided CSI
tracked CSI
prior CSI

genie−CSI avg = 11.0324
tracked−CSI avg = 10.574
prior−CSI avg = 7.3398
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Allocations for α = 0.001:
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Goodput for α = 0.01:
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genie−CSI avg = 11.0086
tracked−CSI avg = 9.8795
prior−CSI avg = 8.1891
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Allocations for α = 0.01:
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Summary:

• Goal: Allocation of {user schedule, powers, rate} to maximize

finite-horizon expected goodput under an instantaneous total-power

constraint and a one-user-per-subcarrier constraint.

• The optimal resource allocator is a POMDP, which is computationally

impractical.

• We settle for greedy resource allocation, thought to be near-optimal for

practical fading rates.

• The greedy allocator itself is computationally impractical, and so we

settle for a practical approximation (99.99% exact).

• To maintain CSI, we track the SNR distribution of each user at each

subcarrier (conditioned on past ACK/NAK feedback).

• Preliminary experiments for 2 users and 2 subchannels indicates that our

practical algorithm does a decent job of SNR tracking and goodput

maximization.
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