Fast Near-Optimal Noncoherent Decoding for Block Transmission over Doubly Dispersive Channels

Sung-Jun Hwang and Phil Schniter

Asilomar 2007

Problem Description:

- Coded block transmission over a quickly time-varying frequency selective channel.
- Channel realizations *unknown*, but channel statistics known.
- Goal: near-optimal decoding with very low complexity and very few pilots.

Approach:

- Turbo reception (soft noncoherent equalization $\stackrel{\rightarrow}{\leftarrow}$ soft decoding).
- Soft decoder: off-the-shelf.
- Soft noncoherent equalizer: a novel design leveraging...
 - tree-search based on M-algorithm,
 - basis expansion model (BEM) for channel variation,
 - fast metric update (*linear* complexity).

Phil Schniter

Channel Model:

Received samples are $\{r_n\}_{n=0}^{N-1}$, where

$$r_n = \sum_{l=0}^{N_h - 1} h_{n,l} s_{n-l} + v_n$$

 $h_{n,l}$: time-*n* response to an impulse at time (n-l)

$$N_h$$
 : discrete delay spread

 $\{s_n\}_{n=0}^{N-1}$: symbols mapped from coded bits $\{x_k\}_{k=0}^{QN-1}$ into the 2^Q -ary symbol alphabet S

 $\{v_n\}_{n=0}^{N-1}$: CWGN with variance σ^2 .

We assume WSSUS Rayleigh fading:

$$E\{h_{n,l}h_{n-m,l-p}^*\} = \rho_m \sigma_l^2 \delta_p,$$

where the autocorrelation $\{\rho_m\}$ and delay-power profile $\{\sigma_l^2\}$ are known.

Simplified LLR Evaluation:

The "max-log" approximation:

$$L_e(x_k|\boldsymbol{r}) \approx \max_{\boldsymbol{x} \in \mathcal{L} \cap \{\boldsymbol{x}: x_k = 1\}} \mu(\boldsymbol{x}) - \max_{\boldsymbol{x} \in \mathcal{L} \cap \{\boldsymbol{x}: x_k = 0\}} \mu(\boldsymbol{x}) - L_a(x_k)$$

$$\mathcal{L} : \text{ set containing the } M \text{ most probable } \boldsymbol{x},$$

requires only a few evaluations of $\mu(\boldsymbol{x})$. But how complex is this?

Say
$$\overline{\boldsymbol{r} = \boldsymbol{S}\boldsymbol{h} + \boldsymbol{v}}$$
 where $\boldsymbol{h} \sim \mathcal{CN}(\boldsymbol{0}, \boldsymbol{R}_h)$ and $\boldsymbol{v} \sim \mathcal{CN}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$. Then
 $\boldsymbol{r} | \boldsymbol{s} \sim \mathcal{CN}(\boldsymbol{0}, \underline{\boldsymbol{S}} \underline{\boldsymbol{R}}_h \underline{\boldsymbol{S}}^H + \sigma^2 \boldsymbol{I})$
 $\Phi(\boldsymbol{s})$
 $\Rightarrow \ln p(\boldsymbol{r} | \boldsymbol{s}) = -\boldsymbol{r}^H \Phi^{-1} \boldsymbol{r} - \ln \det \Phi - N \ln \pi$
 $\Rightarrow \mu(\boldsymbol{x}) = -\boldsymbol{r}^H \Phi^{-1} \boldsymbol{r} - \ln \det \Phi - N \ln \pi + \sum_{i: x_i = 1} L_a(x_i)$
 \Rightarrow direct evaluation of $\mu(\boldsymbol{x})$ is $\mathcal{O}(N^3)$. Still quite expensive!

Fast Soft Noncoherent Equalization:

We propose a novel equalization algorithm, based on

- efficient tree search to find best M bit sequences \mathcal{L} , and
- fast recursive update of MAP metric $\mu(\pmb{x})$ using
 - a basis expansion model (BEM) for the channel's time-variation,
 - recursive update of the implicit MMSE channel estimate $\hat{\theta}$.

The result is *near-MAP* performance with complexity that is

- linear in the block length, and
- *quadratic* in the channel length.

BEM Approximation:

$$\begin{split} h_{n,l} &\approx \sum_{p=0}^{N_b-1} b_{n,p} \theta_{p,l} \quad \text{for } n \in \{0, \dots, N-1\}.\\ \{b_{n,p}\}_{n=0}^{N-1} &: p^{th} \text{ basis waveform}\\ N_b &: \text{ number of basis waveforms}\\ \theta_{p,l} &: \text{ coefficient for } p^{th} \text{ basis waveform and } l^{th} \text{ lag.} \end{split}$$

Basis choices include:

- complex exponential basis: $b_{n,p} = e^{j\frac{2\pi}{N}(p \frac{N_b 1}{2})n}$,
- polynomial basis: $b_{n,p} = n^p$
- Karhunen-Loeve basis: $\{b_{n,p}\}_{n=0}^{N-1}$ is the p^{th} largest eigenvector of the Toeplitz matrix defined from the autocorrelation $\{\rho_m\}_{m=0}^{N-1}$.

Note: $N_b = N$ yields zero approximation error, though typically $N_b = 2$.

Sequential Processing based on the BEM:

$$egin{array}{lll} m{r}_n &:= & [r_0, r_1, \dots, r_n]^T &= & m{B}_n m{S}_0^n m{ heta} + m{v}_n \end{array}$$

where, by example,

$$\underbrace{\begin{bmatrix} r_0 \\ r_1 \\ r_2 \end{bmatrix}}_{\boldsymbol{r}_2} = \underbrace{\begin{bmatrix} \boldsymbol{b}_0^H & \\ & \boldsymbol{b}_1^H \\ & & \boldsymbol{b}_2^H \end{bmatrix}}_{\boldsymbol{B}_2} \underbrace{\begin{bmatrix} s_0 \boldsymbol{I}_{N_b} & s_{-1} \boldsymbol{I}_{N_b} \\ s_1 \boldsymbol{I}_{N_b} & s_0 \boldsymbol{I}_{N_b} \\ s_2 \boldsymbol{I}_{N_b} & s_1 \boldsymbol{I}_{N_b} \end{bmatrix}}_{\boldsymbol{\theta}} \underbrace{\begin{bmatrix} \boldsymbol{\theta}_0 \\ & \boldsymbol{\theta}_1 \end{bmatrix}}_{\boldsymbol{\theta}} + \underbrace{\begin{bmatrix} v_0 \\ v_1 \\ v_2 \end{bmatrix}}_{\boldsymbol{v}_2}$$

 $\boldsymbol{b}_n = [b_{n,0}, \dots, b_{n,N_b-1}]^H$: time-*n* basis elements $\boldsymbol{\theta}_l = [\theta_{0,l}, \dots, \theta_{N_b,l}]^T$: lag-*l* BEM coefficients.

Note:

- $\boldsymbol{\theta} \in \mathbb{C}^{N_b N_h}$ contains all unknown channel coefficients,
- S_0^n contains data symbols $s_n := [s_0, s_1, \dots, s_n]^T$.

Fast Metric Update:

Say \boldsymbol{x}_n contains bits from \boldsymbol{s}_n . Can compute $\mu(\boldsymbol{x}_n)$ given $\mu(\boldsymbol{x}_{n-1})$ via

$$\begin{split} \boldsymbol{a}_{n} &= \left[s_{n}\boldsymbol{b}_{n}^{H}, s_{n-1}\boldsymbol{b}_{n}^{H}, \cdots, s_{n-N_{h}+1}\boldsymbol{b}_{n}^{H}\right]^{H} \in \mathbb{C}^{N_{h}N_{b}} \\ \boldsymbol{d}_{n} &= \boldsymbol{\Sigma}_{n-1}^{-1}\boldsymbol{a}_{n} \\ \boldsymbol{\alpha}_{n} &= (1 + \boldsymbol{a}_{n}^{H}\boldsymbol{d}_{n})^{-1} \\ \boldsymbol{\Sigma}_{n}^{-1} &= \boldsymbol{\Sigma}_{n-1}^{-1} - \boldsymbol{\alpha}_{n}\boldsymbol{d}_{n}\boldsymbol{d}_{n}^{H} \\ \boldsymbol{\mu}(\boldsymbol{x}_{n}) &= \boldsymbol{\mu}(\boldsymbol{x}_{n-1}) - \frac{\boldsymbol{\alpha}_{n}}{\sigma^{2}}|r_{n} - \boldsymbol{a}_{n}^{H}\hat{\boldsymbol{\theta}}_{n-1}| - \ln(\pi\boldsymbol{\alpha}_{n}) + \sum_{i:x_{i}=1,x_{i}\in s_{n}} L_{a}(x_{i}) \\ \hat{\boldsymbol{\theta}}_{n} &= (\boldsymbol{I}_{N_{h}N_{b}} - \boldsymbol{\alpha}_{n}\boldsymbol{d}_{n}\boldsymbol{a}_{n}^{H})\hat{\boldsymbol{\theta}}_{n-1} + (1 - \boldsymbol{\alpha}_{n}\boldsymbol{d}_{n}^{H}\boldsymbol{a}_{n})r_{n}\boldsymbol{d}_{n}, \\ \text{using only} \boxed{2(N_{h}N_{b})^{2} + 9N_{h}N_{b} + 8} \text{ multiplications!} \end{split}$$

Fast Tree Search:

Breadth-first search via the M-algorithm:

- Say \mathcal{L}'_n contains the M "best" estimates of \boldsymbol{x}_n . For each extension $\boldsymbol{x}_{n+1} = \begin{bmatrix} x \\ \boldsymbol{x}_n \end{bmatrix}$, where $\boldsymbol{x}_n \in \mathcal{L}'_n$ and $x \in \{0, 1\}^Q$, calculate the metric $\mu(\boldsymbol{x}_{n+1})$. Then collect the M best extensions in the set \mathcal{L}'_{n+1} .
- Doing this for n = 0, ..., N 1 requires the evaluation of M2^QN MAP metrics, yielding L' := L'_{N-1}, an estimate of the M most probable bit vectors.
- Performance almost indistinguishable from full search (i.e., $\mathcal{L}' \approx \mathcal{L}$).

In total, $2M2^Q N(N_b N_h)^2$ multiplications are required to compute the MAP metrics $\{\mu(\boldsymbol{x}) : \boldsymbol{x} \in \mathcal{L}'\}$. Note that this complexity is

- *linear* in the block length N,
- quadratic in the channel length $N_b N_h$.

Construction of the Transmission Block:

Pilots:

- One pilot symbol sufficient to resolve channel/data phase ambiguity.
- $N_p > 1$ pilots provide a good "initialization" of $\mu(\boldsymbol{x}_{N_p})$, helping improve the accuracy of tree search.
- $N_p \ge N_h N_b$ needed for channel-estimation followed by coherent decoding.

Guard:

- A ZP guard interval of length N_h-1 prevents inter-block interference and enables capture of diversity from delay spread.
- Note: we hope to capture Doppler diversity through iteration with soft decoder.

Numerical Experiments (Setup):

Transmitter:

- rate- $\frac{1}{2}$ LDPC coding, frame length 4096, QPSK (Q = 2),
- block length N = 64,
- $N_p \in \{3, 6, 9\}$ pilots.

Channel:

• WSSUS Rayleigh (via Jakes) with $N_h = 3$ taps at $f_D T_s = 0.002$.

Receiver:

- KL-basis with $N_b = 2$,
- search parameter $M \in \{16, 32, 64, 128\}$,
- inner (i.e., LDPC decoding) iterations ≤ 60 ,
- outer (i.e., turbo) iterations $\in \{1, 2, 4, 8, 12, 16\}$.

Numerical Experiments (Interpretations):

Genie-aided references:

1. perfectly known channel,

2. channel estimated from 100% training.

Only about 2 dB away!

Maximum diversity order offered by channel:

- $f_{\rm D}T_s = 0.002 \implies$ coherence time = 500 symbols.
- 4096-symbol frame \Rightarrow 8 coherence intervals.
- 3 taps $\times 8$ coherence intervals = 24 degrees of freedom.

The BER slopes confirm that our scheme achieves maximum diversity!

Conclusions:

- We presented a novel scheme for the reception of coded transmissions over quickly varying multipath channels
- Leveraged a BEM approximation of channel, the M-algorithm, a fast recursive update for the MAP metric, and the turbo principle.
- Achieved performance $\approx 2 \text{ dB}$ away from genie-aided bounds at a complexity of $\left| \approx 2M2^Q (N_b N_h)^2 \right|$ mults per QAM symbol.
- Only need one pilot per block, though a few more help performance.