Joint Channel Estimation and Sequence Detection over Doubly Dispersive Channels

> Sung-Jun Hwang and Phil Schniter

Nov. 2006

Problem Description:

- Uncoded block transmission over an ISI channel that varies significantly over the block.
- Data symbols and channel are both unknown. At least one known pilot symbol.
- Interested in near-optimal sequence detection with reasonable complexity.

Related Work:

- Per-survivor processing (PSP): trellis-based equalization using the surviving partial-paths as training for adaptive channel estimation.
- Joint estimation/MLSD for singly-dispersive channels.

System Model:

Received samples are $\left\{r_{n}\right\}_{n=0}^{N-1}$, where

$$
r_{n}=\sum_{l=0}^{N_{h}-1} h_{n, l} s_{n-l}+v_{n}
$$

$h_{n, l}$: time- n response to an impulse at time $(n-l)$.
N_{h} : discrete channel spread.
$\left\{s_{n}\right\}_{n=0}^{N-1}$: symbols from finite alphabet \mathcal{Q}
$\left\{v_{n}\right\}_{n=0}^{N-1}:$ CWGN with variance σ^{2}.
We assume WSSUS fading:

$$
E\left\{h_{n, l} h_{n-m, l-p}^{*}\right\}=\rho_{m} \sigma_{l}^{2} \delta_{p}
$$

Note: holds for single-carrier transmission over a time-varying ISI channel, or multicarrier transmission over a frequency-varying ICI channel.

BEM Approximation (Used by Receiver):

The receiver employs a basis expansion model (BEM)

$$
\begin{aligned}
h_{n, l} & \approx \sum_{p=0}^{N_{b}-1} b_{n, p} \theta_{p, l} \quad \text { for } n \in\{0, \ldots, N-1\} . \\
\left\{b_{n, p}\right\}_{n=0}^{N-1} & : p^{t h} \text { basis waveform } \\
N_{b} & : \text { number of basis waveforms } \\
\theta_{p, l} & : \text { coefficient for } p^{t h} \text { basis waveform and } l^{\text {th }} \mathrm{lag}
\end{aligned}
$$

BEM options include:

- oversampled complex exponential: $b_{n, p}=e^{j \frac{2 \pi}{N K} p n}, K \geq 1$
- polynomial: $b_{n, p}=n^{p}$
- Karhunen-Loeve: $\left\{b_{n, p}\right\}_{n=0}^{N-1}$ is the $p^{\text {th }}$ largest eigenvector of Toeplitz correlation matrix defined from $\left\{\rho_{m}\right\}_{m=0}^{N-1}$

BEM-Approximated System Model:

$$
\boldsymbol{r}_{n}=\boldsymbol{B}_{n} \boldsymbol{S}_{0}^{n} \boldsymbol{\theta}+\boldsymbol{v}_{n}
$$

where, by example,

$$
\begin{aligned}
\underbrace{\left[\begin{array}{c}
r_{2} \\
r_{1} \\
r_{0}
\end{array}\right]}_{\boldsymbol{r}_{2}} & =\underbrace{\left[\begin{array}{lll}
\boldsymbol{b}_{2}^{H} & & \\
& \boldsymbol{b}_{1}^{H} & \\
& & \boldsymbol{b}_{0}^{H}
\end{array}\right]}_{\boldsymbol{B}_{2}} \underbrace{\left[\begin{array}{ccc}
s_{2} \boldsymbol{I}_{N_{b}} & s_{1} \boldsymbol{I}_{N_{b}} \\
s_{1} \boldsymbol{I}_{N_{b}} & s_{0} \boldsymbol{I}_{N_{b}} \\
s_{0} \boldsymbol{I}_{N_{b}} & s_{-1} \boldsymbol{I}_{N_{b}}
\end{array}\right]}_{\boldsymbol{S}_{0}^{2}} \underbrace{\left[\begin{array}{c}
\boldsymbol{\theta}_{0} \\
\boldsymbol{\theta}_{1}
\end{array}\right]}_{\boldsymbol{\theta}}+\underbrace{\left[\begin{array}{c}
v_{2} \\
v_{1} \\
v_{0}
\end{array}\right]}_{\boldsymbol{v}_{2}} \\
\boldsymbol{b}_{n} & =\left[b_{n, 0}, \ldots, b_{n, N_{b}-1}\right]^{H} \quad: \text { time- } n \text { basis values } \\
\boldsymbol{\theta}_{l} & =\left[\theta_{0, l}, \ldots, \theta_{N_{b}, l}\right]^{T} \quad: \text { lag-l BEM coefficients }
\end{aligned}
$$

Note:

- $\boldsymbol{\theta} \in \mathbb{C}^{N_{b} N_{h}}$ contains all time-varying channel parameters
- \boldsymbol{S}_{0}^{n} contains data symbols $\boldsymbol{s}_{n}=\left[s_{n}, \ldots, s_{0}\right]^{T}$

Noncoherent Data Detection:

MLSD criterion:

$$
\hat{\boldsymbol{s}}_{n}=\arg \max _{\boldsymbol{s}_{n}} p\left(\boldsymbol{r}_{n} \mid \boldsymbol{s}_{n}\right)
$$

With prior channel pdf $p(\boldsymbol{\theta})$,

$$
p\left(\boldsymbol{r}_{n} \mid \boldsymbol{s}_{n}\right)=\int_{\boldsymbol{\theta}} \overbrace{p\left(\boldsymbol{r}_{n} \mid \boldsymbol{s}_{n}, \boldsymbol{\theta}\right)}^{\mathcal{C N}\left(\boldsymbol{B}_{n} \boldsymbol{S}_{0}^{n} \boldsymbol{\theta}, \sigma^{2} \boldsymbol{I}\right)} \underbrace{p(\boldsymbol{\theta})}_{\mathcal{C N}\left(\mathbf{0}, \boldsymbol{R}_{\theta}\right)} d \boldsymbol{\theta}
$$

After some algebra, we obtain a quadratic noncoherent metric

$$
\hat{\boldsymbol{s}}_{n}=\arg \min _{\boldsymbol{s}_{n}}\{\underbrace{\boldsymbol{r}_{n}^{H} \boldsymbol{\Phi}_{\boldsymbol{s}_{n}} \boldsymbol{r}_{n}}_{\mu\left(\boldsymbol{s}_{n}\right)}+\log \operatorname{det}\left(\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}\right)\} \approx \arg \min _{\boldsymbol{s}_{n}} \mu\left(\boldsymbol{s}_{n}\right)
$$

for $\boldsymbol{\Phi}_{\boldsymbol{s}_{n}}=\left(\boldsymbol{B}_{n} \boldsymbol{S}_{0}^{n} \boldsymbol{R}_{\theta}\left(\boldsymbol{B}_{n} \boldsymbol{S}_{0}^{n}\right)^{H}+\sigma^{2} \boldsymbol{I}_{n+1}\right)^{-1}$.

Estimation/Detector Interpretation:

Can write noncoherent metric as

$$
\mu\left(\boldsymbol{s}_{n}\right)=\underbrace{\sigma^{-2}\left\|\boldsymbol{r}_{n}-\boldsymbol{B}_{n} \boldsymbol{S}_{0}^{n} \hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}}\right\|^{2}}_{\text {"coherent" } \mathrm{ML} \text { metric }}+\underbrace{\sigma^{-2} \hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}}^{H} \boldsymbol{R}_{\theta}^{-1} \hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}}}_{\text {prior reconciliation }}
$$

where $\hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}}$ is the MMSE estimate of $\boldsymbol{\theta}$ from \boldsymbol{r}_{n} given \boldsymbol{s}_{n} :

$$
\hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}}=\mathrm{E}\left\{\boldsymbol{\theta} \boldsymbol{r}_{n}^{H} \mid \boldsymbol{s}_{n}\right\} \mathrm{E}\left\{\boldsymbol{r}_{n} \boldsymbol{r}_{n}^{H} \mid \boldsymbol{s}_{n}\right\}^{-1} \boldsymbol{r}_{n}
$$

In other words, the noncoherent metric $\mu\left(s_{n}\right)$ adapts to the channel that is implicitly estimated with s_{n} as training.

Note: Brute-force search evaluates $|\mathcal{Q}|^{N}$ metrics!!

Fast Adaptive Sequential Decoding:

1. Suboptimal breadth-first tree search via the M-algorithm:

- Say \mathcal{S}_{n} contains the M "best" estimates of \boldsymbol{s}_{n}. For each extension $\boldsymbol{s}_{n+1}=\left[\begin{array}{c}s \\ s_{n}\end{array}\right]$, where $\boldsymbol{s}_{n} \in \mathcal{S}_{n}$ and $s \in \mathcal{Q}$, calculate the noncoherent metric $\mu\left(\boldsymbol{s}_{n+1}\right)$. Then keep M best in \mathcal{S}_{n+1}.
- In total, evaluates $M|\mathcal{Q}| N$ noncoherent metrics.
- Performance almost indistinguishable from brute-force.

2. Fast metric computation:

- Updating $\hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}}$ requires only about $n N_{b} N_{h}+4 N_{b}^{2} N_{h}^{2}$ operations.

Assuming $N>N_{b} N_{h}$ (i.e., an underspread channel), the total complexity of calculating $\hat{\boldsymbol{s}}_{N-1}$ is $\mathcal{O}\left(M|\mathcal{Q}| N^{2} N_{b} N_{h}\right)$.

Fast Metric Computation:

Can write MMSE estimate as

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n}} & =\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}^{-1} \boldsymbol{A}_{n}^{H} \boldsymbol{r}_{n} \\
\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}} & =\boldsymbol{A}_{n}^{H} \boldsymbol{A}_{n}+\sigma^{2} \boldsymbol{R}_{\theta}^{-1} \\
\boldsymbol{A}_{n} & =\boldsymbol{B}_{n} \boldsymbol{S}_{0}^{n} \in \mathbb{C}^{(n+1) \times N_{b} N_{h}}
\end{aligned}
$$

Noticing a rank-one update:

$$
\begin{aligned}
\boldsymbol{\Sigma}_{\boldsymbol{s}_{n+1}} & =\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}+\boldsymbol{a}_{n+1} \boldsymbol{a}_{n+1}^{H} \\
\boldsymbol{a}_{n+1}^{H} & =\boldsymbol{b}_{n+1}^{H} \boldsymbol{S}_{n+1}^{n+1} \in \mathbb{C}^{N_{b} N_{h}} \\
\boldsymbol{\Sigma}_{\boldsymbol{s}_{n+1}}^{-1} & =\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}^{-1}-\frac{\left(\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}^{-1} \boldsymbol{a}_{n+1}\right)\left(\boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}^{-1} \boldsymbol{a}_{n+1}\right)^{H}}{1+\boldsymbol{a}_{n+1}^{H} \boldsymbol{\Sigma}_{\boldsymbol{s}_{n}}^{-1} \boldsymbol{a}_{n+1}}
\end{aligned}
$$

so complexity of calculating $\hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n+1}}$ is $\mathcal{O}\left(n N_{b} N_{h}\right)$ when $n>N_{b} N_{h}$.
Given $\hat{\boldsymbol{\theta}}_{\boldsymbol{s}_{n+1}}$, the complexity of calculating $\mu\left(\boldsymbol{s}_{n+1}\right)$ is also $\mathcal{O}\left(n N_{b} N_{h}\right)$ when $n>N_{b} N_{h}$.

Construction of the Transmission Frame:

Pilots:

- One pilot symbol needed to resolve channel/data phase ambiguity.
- N_{h} leading pilots useful for "initializing" the metric, allowing for good M -alg performance with small M.
- $N_{h} N_{b}$ pilots required for pilot-aided estimation-then-detection.

Diversity:

- $N_{h}-1$ trailing zeros needed to make full delay-diversity accessible.
- Doppler diversity not accessible without coding/precoding. (This issue will be treated in future work.)
\rightsquigarrow We insert $N_{h} N_{b}$ leading pilots to facilitate a fair comparison with estimation-then-detection schemes, and we insert $N_{h}-1$ trailing zeros to make delay-diversity accessible.

Numerical Experiments:

- BPSK symbols, $N=25$
- WSSUS Jakes channel with delay spread $N_{h}=2$ and single-sided Doppler spread $f_{\mathrm{d}} T_{s} \in\{0.002,0.005\}$.
- Receiver BEMs $\left(N_{b}=2\right)$:

1. Karhunen-Loeve (KL)
2. Oversampled Complex Exponential (OCE)

- Reference Algorithms

1. ML with perfect $\left\{h_{n, l}\right\}$
2. ML with MMSE- $\hat{\boldsymbol{\theta}}$ from pilots+data (genie-aided)
3. ML with MMSE- $\hat{\boldsymbol{\theta}}$ from pilots
4. PSP with RLS- $\left\{\hat{h}_{n, l}\right\}$

Effect of Metric Approximation and Choice of M :

$$
f_{\mathrm{d}} T_{s}=0.005
$$

Performance with KL-BEM:

Performance with OCE-BEM:

Conclusions:

- Joint channel/symbol estimation for quickly varying ISI channels.
- Leveraged BEM channel approximation, M-algorithm, fast MMSE-channel estimation.
- Less than 1 dB from optimal performance at complexity $\mathcal{O}\left(M|\mathcal{Q}| N^{2} N_{b} N_{h}\right)$.
- Significantly outperforms decoupled channel/symbol estimation.
- Outperforms PSP-RLS, especially at high Doppler spreads.

