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Abstract—We propose a scheme for near-optimal sequence
detection (SD) of uncoded block transmissions over unknown
doubly dispersive (DD) channels. Starting with a noncoherent
maximum likelihood (ML) metric that leverages a basis expansion
model (BEM) for the channel’s time-variation, we propose an
efficient noncoherent SD strategy based on suboptimal tree
search with a fast metric update. Our scheme yields performance
within a fraction-of-a-dB from ML sequence detection with genie-
aided channel estimates, and maintains complexity that is only
quadratic in the block length.1

I. I NTRODUCTION

In this paper, we consider uncoded block transmission
through a doubly dispersive (DD) channel, i.e., a quickly time-
varying inter-symbol interference (ISI) channel. When the re-
ceiver has perfect channel state information (CSI), maximum-
likelihood (ML) sequence detection (SD)—known to mini-
mize the probability of sequence-error, can be implemented
using the classical Viterbi algorithm (VA) [1] with complexity
O(N |S|Nh+1), where N denotes the block length,|S| the
alphabet size, andNh the discrete channel length.

Here we focus on the case that the receiver knows the chan-
nel statistics but not the channel state, yielding a noncoherent
sequence detection problem. In addition, we focus on Gaussian
channels. In this case, MLSD requires a brute-force search
among all sequences [2] and implicitly computes a minimum
mean-squared error (MMSE) channel estimate for each. It is
important to note that the VA cannot be used for MLSD since
the ML branch metrics in trellis-based SD are a function of
all past and future trellis states. Even when the channel is
Gauss-Markov, the ML branch metrics are a function of all
past states. Per-survivor processing (PSP) [3], however, can
be employed to yield an accurate VA-based approximation of
MLSD. In PSP-VA, channel estimates are computed for each
surviving path, using past symbol hypotheses in a decision-
directed manner. With a Gauss-Markov channel, for instance,
the Kalman algorithm can be employed for recursive MMSE
channel estimation [2]. As shown in [4], the gap between
PSP-VA and MLSD can be made quite small by adopting
a list-Viterbi algorithm (LVA), which retainsL ≥ 1 partial
paths at each trellis state. Assuming a first-order Gauss-
Markov channel model, the complexity of Kalman-PSP-LVA is
O(N |S|Nh+1N3

hL), which is attractive for long blocks due to
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a linear dependence on block lengthN . PSP-VA has also been
proposed in conjunction with LMS [5] and RLS [3], which
may be convenient when the channel statistics are unknown.

Viewing PSP-VA (or PSP-LVA) as a form of suboptimal
tree search, the question remains as to whether a different
form of suboptimal tree search could offer a superior perfor-
mance/complexity tradeoff, say, for longer channels. Towards
this aim, we propose near-ML noncoherent SD that leverages
a simplified ML metric, suboptimal breadth-first search via
the M-algorithm [6], and recursive MMSE estimation of basis
expansion model (BEM) [7] coefficients. In Section IV, we
show that our algorithm performs within a fraction-of-a-dB
from MLSD with genie-aided MMSE channel estimates; to
our knowledge, this performance is state-of-the-art. In addi-
tion, we demonstrate that our algorithm is robust to over-
estimation of the channel fading rate. Since our algorithm
is O(N2|S|NhNbM), whereNb denotes the basis size, it is
cheaper than Kalman-PSP-LVA for moderate channel lengths
(e.g.,Nh ≥ 4) and block lengths (e.g.,N < 100). A detailed
complexity comparison is provided in Section III.

We now discuss related work. To our knowledge, the
Kalman-PSP-LVA [4] is the highest-performancepractical
means of noncoherent sequence detection in the doubly dis-
persive environment; it has been shown [4], [8] to outperform
both LMS-PSP-LVA and RLS-PSP-LVA, as well as iterative
methods based on expectation-maximization (EM). Hence, we
use it as a baseline for comparison. The estimation of BEM
coefficients, in place of the time-varying impulse response,
was proposed in [9] in the context of PSP-VA. But BEM
estimation does not appear to work well in conjunction with
the path-pruning of PSP-VA; our experiments, as well as
those in [9], show an early error floor. Though the suggestion
to use generic tree-search algorithms for joint channel/data
estimation can be found, e.g., in [3], we are not aware
of existing strategies that are particularly well-suited to the
doubly dispersive environment.

II. SYSTEM MODEL

We consider a discrete-time complex-baseband system with
transmitted symbols{sn} drawn from a finite QAM alphabet
S, and with a channel described by the time-varying discrete



impulse responsehn,l. The received samples are written as

rn =

Nh−1
∑

l=0

hn,lsn−l + vn, (1)

whereNh is the channel length and{vn} is zero-mean circular
white Gaussian noise (CWGN) with covarianceσ2.

The receiver approximates the channel response, over the
block of N samples, by theNb-size basis expansion

hn,l ≈
Nb−1
∑

p=0

bn,pθp,l for n ∈ {0, . . . , N − 1}. (2)

Here, Nb and {bn,p} are design parameters and{θp,l} are
random channel coefficients. An error free approximation is
possible withNb = N , while significant reduction in detection
complexity is possible withNb ≪ N . As we shall see, the
detection performance loss due to channel modeling error can
be made relatively small through proper choice of basis{bn,p},
even forNb ≪ N . Under approximation (2), the system model
(1) can be written, forn ∈ {0, . . . , N − 1}, as

rn = b
H
n

Nh−1
∑

l=0

sn−lθl + vn, (3)

for bn := [bn,0, . . . , bn,Nb−1]
H andθl := [θ0,l, . . . , θNb−1,l]

T .
For n < N , we can writern := [rn, . . . , r0]

T as

rn = BnS
n
0θ + vn (4)

rn+1 = b
H
n+1S

n+1
n+1θ + vn+1, (5)

whereθ := [θT
0 , . . . ,θT

Nh−1]
T , vn := [vn, . . . , v0]

T , and

Bn :=







b
H
n

. . .
b

H
0






(6)

S
n
m :=







snINb
· · · sn−Nh+1INb

...
...

smINb
· · · sm−Nh+1INb






. (7)

The following abbreviations will prove useful in the sequel:

Asn
:= BnS

n
0 (8)

a
H
sn+1

:= b
H
n+1S

n+1
n+1. (9)

III. FAST NONCOHERENTSEQUENCEDETECTION

In this section, we describe a fast algorithm to decode
{sn}

N−1
n=0 from the observations{rn}

N−1
n=0 in the presence of

channel uncertainty. In doing so, we assume that{sn}n<0 are
zero or otherwise known. Our algorithm is sequential in nature,
in that it estimates the partial-sequencesn := [sn, . . . , s0]

T for
n = 0, 1, 2, . . . , ultimately estimating the full sequencesN−1.
In deriving our algorithm, we employ the BEM approximation
(2) and treatθ as zero-mean circular complex Gaussian with
known autocovarianceRθ. Furthermore, we assume that the
BEM is chosen to makeRθ full rank and diagonal. In the
performance evaluation of Section IV, however, we will not
assume that the BEM approximation (2) holds perfectly, and
hence will see the effect of BEM mismatch.

A. Noncoherent Sequence Detection Metric

The MLSD estimate is defined as

ŝn = arg max
sn

p(rn|sn), (10)

where, marginalizing over the channel,

p(rn|sn)

=

∫

θ

p(rn|sn,θ)p(θ)dθ

=

∫

θ

1

(πσ2)n
exp

{

− 1
σ2 ‖rn − Asn

θ‖2
}

p(θ)dθ.

Sinceθ ∼ CN (0,Rθ), we can write

p(rn|sn)

= C1

∫

θ

exp
{

− 1
σ2 ‖rn − Asn

θ‖2 − θ
H

R
−1
θ θ

}

dθ

= C2

∫

θ

exp
{

− 1
σ2

∥

∥θ − Σ
−1
sn

A
H
sn

rn

∥

∥

2

Σsn

}

dθ

× exp
{

− 1
σ2

(

rH
n rn − rH

n Asn
Σ

−1
sn

A
H
sn

rn

)}

=
C3

det(σ−2Σsn
)

exp
{

− 1
σ2

(

rH
n rn − rH

n Asn
Σ

−1
sn

A
H
sn

rn

)}

where

Σsn
:= A

H
sn

Asn
+ σ2

R
−1
θ , (11)

and where{Ci} are constants irrelevant to the maximization
in (10). Using the monotonicity oflog(·), we can write

ŝn = arg max
sn

{

r
H
n σ−2

(

Asn
Σ

−1
sn

A
H
sn

− In+1

)

rn

− log det(σ−2
Σsn

)
}

. (12)

As reported elsewhere (e.g., [10]), the maximization in (12)
can be simplified by ignoring the bias termlog det(σ−2

Σsn
).

Remarkably, experiments in Section IV show that the resulting
performance loss is negligible over the SNR range of interest.
The simplified detection rule reads as

ŝn ≈ arg min
sn

µ(sn) (13)

with

µ(sn) := σ2
r

H
n Φsn

rn (14)

Φsn
:= σ−2

(

In+1 − Asn
Σ

−1
sn

A
H
sn

)

(15)

=
(

Asn
RθA

H
sn

+ σ2
In+1

)−1
, (16)

where (16) follows from the matrix inversion lemma.
We will now show that the detection rule (13) performs

implicit minimum mean-squared error (MMSE) estimation of
θ. Denoting byθ̂sn

the MMSE estimate ofθ from rn given
knowledge ofsn, we have

θ̂sn
= E{θr

H
n |sn}E{rnr

H
n |sn}

−1
rn (17)

= RθA
H
sn

Φsn
rn, (18)



where (18) follows from the fact thatΦsn
= E{rnrH

n |sn}−1.
Plugging (15) into (18), and then applying (11), we find

θ̂sn
= σ−2

Rθ

(

Σsn
Σ

−1
sn

A
H
sn

− A
H
sn

Asn
Σ

−1
sn

A
H
sn

)

rn

= Σ
−1
sn

A
H
sn

rn, (19)

Then, from (14), (15), (19), and (11), we find

µ(sn) = r
H
n rn − r

H
n Asn

Σ
−1
sn

A
H
sn

rn

= r
H
n rn − θ̂

H

sn
A

H
sn

rn − r
H
n Asn

θ̂sn
+ θ̂

H

sn
Σsn

θ̂sn

= ‖rn − Asn
θ̂sn

‖2 − θ̂
H

sn
A

H
sn

Asn
θ̂sn

+ θ̂
H

sn
Σsn

θ̂sn

= ‖rn − Asn
θ̂sn

‖2 + σ2
θ̂

H

sn
R

−1
θ θ̂sn

. (20)

Equation (20) shows that the noncoherent metricµ(sn) can
be written as the sum of a “coherent metric” with a term that
reconciles the implicit channel estimate against the priors. (A
similar observation was made in [11].)

B. Fast Metric Update

Since the sequence detection algorithm must computeµ(sn)
at each timen, a fast algorithm to computeΣ−1

sn+1
from Σ

−1
sn

is clearly of interest. Due to the rank-one updateΣsn+1
=

Σsn
+ asn+1

aH
sn+1

, the matrix inversion lemma yields

Σ
−1
sn+1

= Σ
−1
sn

−
(Σ−1

sn
asn+1

)(Σ−1
sn

asn+1
)H

1 + aH
sn+1

(Σ−1
sn

asn+1
)

. (21)

With the aid of (21), it is straightforward to show thatµ(sn)
can be computed using2NbNh(3+NbNh)+(n+1)(NbNh+1)
multiplications.

C. Suboptimal Tree Search

We propose to perform an approximate minimization in
(13) via tree search. While many options exist, we choose
breadth-first search via the M-algorithm [6] since it offersnear-
optimum performance at low (and channel/SNR-independent)
complexity. We now outline the M-algorithm assuming that all
symbols in{sn}

N−1
n=0 are unknown; a modification for known

pilot/guard symbols will be described in the next section. Say
that, at thenth detection stage, the M-algorithm has a record
of the M surviving length-n partial paths, whereM is a
design parameter. The M-algorithm then computes the metric
(20) for each length-(n + 1) extension of theseM paths and
keeps only the bestM of these extensions as survivors for
the next stage. At the final stage, the best survivor is chosen
as the full sequence estimate. Thus,M |S| metrics need to be
computed at stagen. Using the fast algorithm of Section III-B,
the total number of multiplications required to computeŝN−1

is [2NNbNh(3 + NbNh) + 1
2N(N + 1)(NbNh + 1)]M |S|.

Figure 1 compares the complexity of the proposed technique
to Kalman-PSP-LVA over a range of block lengthsN and
channel lengthsNh. In particular, Fig. 1 shows contours of the
complexity ratio of Kalman-PSP-LVA relative to the proposed
algorithm, where contour labelp indicates that Kalman-PSP-
LVA is 10p times as complex. Thus, for(N,Nh) located above
the “0”-labeled contour, the proposed algorithm is cheaper.
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Fig. 1. Complexity of proposed scheme relative to Kalman-PSP-LVA
for various combinations of channel length and block length. Contour
label p indicates that Kalman-PSP-LVA is10

p times as complex.

Roughly speaking, this corresponds toNh ≥ 4 andN < 100.
In computing the figure, we assumed QPSK andfdTs = 0.005.
The BEM sizeNb (a function of N ) was set equal to the
number of significant eigenvalues of the channel correlation
matrix. To evaluate Kalman-PSP-LVA complexity, we counted
the multiplies required of the algorithm in [4], assumingP×P
matrix inversion costs43P 3−2P 2 + 2

3P multiplies (e.g., using
Gaussian elimination), and noting that [4] assumed a first-order
Gauss-Markov channel model. For the M-algorithm, we used
M = 4, and, for LVA, we usedL = 4.

D. On Pilot/Guard Symbols

Because the metric (13) lacks an absolute phase reference,
decoding ambiguities will exist for rotationally symmetric
alphabets (e.g., QAM or PSK). Furthermore, gain ambiguities
may exist for non-constant-modulus alphabets. These scalar
ambiguities, however, can be resolved by the use of a single
pilot. While we do not classify the methods described in
this paper as “pilot-aided” per se (e.g., they unambiguously
decode non-symmetric alphabets [12]), their performance (and
the performance of noncoherent MLSD) can be significantly
enhanced through judicious embedding of known symbols.

For example, the achievable diversity is strongly influenced
by how the lastNh−1 symbol locations are used. To see why,
notice that a data symbol at indexN − k would contribute to
the observations{rn}

N−1
n=0 through thek channel coefficients

{h:,l}
k−1
l=0 and, hence, see at mostkth-order diversity. To

prevent symbols transmitted in the lastNh − 1 locations from
achieving less thanN th

h -order diversity—thereby dominating
high-SNR error-rate, we advocate the use of length-(Nh − 1)
zero-padding. As another example, decoding complexity can
be strongly influenced by how the firstNh symbol locations
are used. IfNp ≥ Nh pilot symbols are placed at the
beginning of the sequence, then they can be used to compute
a reasonable initial channel estimate, allowing “calibration” of



the noncoherent metric (20) before the M-algorithm discards
partial paths. Such a calibration allows good M-algorithm
performance with a small value ofM (or, similarly, good PSP-
LVA performance with a small value ofL).

Note that a simple modification of the M-algorithm suffices
to handle the case of arbitrary pilot/guard symbols: When the
M-algorithm encounters a known symbol, each surviving path
is given a single (rather than|S|-ary) extension.

IV. N UMERICAL RESULTS

To generate DD channel realizations, we used a wide-
sense stationary uncorrelated scattering (WSSUS) Jake’s
model [13] with uniform delay-power profile, for which
E{hn,lh

∗
n−m,l−ℓ} = ρmσ2

l δℓ and σ2
l = 1/Nh. For the case

of Rayleigh fading,ρm = J0(2πfdTsm), wherefdTs denotes
the normalized single-sided Doppler spread andJ0(·) denotes
the 0th-order Bessel function of the first kind. As suggested
by Section III-D, the symbol sequence includedNp leading
pilots andNh − 1 trailing zeros.

We consider two choices of receiver BEM: Karhunen Lòeve
(KL) [14] and oversampled complex exponential (OCE) [15].
For the KL-BEM, bn,p = [V ]n,p, where the columns of
V are the eigenvectors of the channel covariance matrix
corresponding to theNb largest eigenvalues. For the OCE-
BEM basis, we start withbn,p = 1√

N
ej 2π

NK
(p−

Nb−1

2
)n with

oversampling factorK = 2, determine the statisticsRθ that
best match the channel covariance, then de-correlate the basis
vectors so thatRθ becomes diagonal.

A. Suboptimality of Metric Simplification and M-Algorithm

Figure 2 compares the frame error rate (FER) of exact non-
coherent MLSD in (12) to that of the simplified SD criterion
in (13). To facilitate exact MLSD, the system parameters were
chosen asN = 10, Nh = 2, fdTs = 0.005, Np = 1, andS =
BPSK, where a KL-BEM withNb = 2 was assumed at the
receiver. It can be seen that the performance loss due to ML-
metric simplification is negligible throughout the SNR range of
interest. Figure 2 also shows the FER when the M-algorithm is
used to approximately minimize (13), under various choicesof
M . It can be seen that choosingM ≥ 4 results in performance
that is within0.2 dB of optimal.

B. Performance Versus SNR

Figures 3–4 compare the FER of the proposed noncoherent
sequence detector (withM = 6) to Kalman-PSP-LVA (with
L = 4) and to two genie-aided schemes: MLSD with perfectly
known{hn,l}, and MLSD with a genie-aided MMSE estimate
of θ. In both figures, subplot (a) corresponds tofdTs = 0.002
while subplot (b) corresponds tofdTs = 0.005. For all
experiments,N = 64, Nh = 3, S = BPSK, andNp = 9.
The length-Np pilot sequence was the “spectrally efficient
Kronecker delta” (SEKD) scheme from [16]—a cascade of
Nb Kronecker delta sequences, each of lengthNh.

The Kalman-PSP-LVA assumed a first-order Gauss-Markov
channel whose parameters were experimentally optimized to
minimize FER. The initial Kalman estimate was computed

with the aid of theNp-length pilot sequence. For genie-aided
MLSD, θ was estimated using a full frame of (randomly-
generated) known symbols transmitted over an identical chan-
nel realization. We reason that MLSD with genie-aided
MMSE-θ̂ acts as a tight performance upper bound for any
BEM-based noncoherent sequence detection scheme. In Fig. 3,
the KL-BEM was employed, while in Fig. 4 the OCE-BEM
was employed. All traces used BEM orderNb = 3.

Figures 3–4 show that, when the KL-BEM is used, the pro-
posed noncoherent sequence detector comes within a fraction-
of-a-dB from MLSD with genie-aided MMSE-θ̂, and within
about1 dB from MLSD with perfect CSI, for all tested values
of SNR andfdTs. In comparison, Kalman-PSP-AR performs
about 2 dB worse. When OCE-BEM is used, the proposed
scheme performs similar to to Kalman-PSP-AR at low SNR,
but seems to avoid (or postpone) the error floor exhibited by
Kalman-PSP-AR at high SNR. From the high-SNR slope of
the error traces, it can be seen that the proposed algorithm
attains a diversity order ofNh = 3 for both BEMs.

C. Performance VersusfdTs

In Fig. 5, the proposed KL-BEM and Kalman-PSP-LVA
detectors were designed for fixedfdTs = 0.005 but then
tested on differing values offdTs. (The simulation parameters
were the same as for Figures 3–4.) Figure 5 demonstrates
the robustness of the proposed algorithm (as well as Kalman-
PSP-LVA) to over-estimation of the Doppler spread. This is
an important practical consideration because known statistics
have been assumed throughout.

V. CONCLUSION

We proposed a scheme for near-optimal sequence detec-
tion of uncoded block transmissions over unknown doubly
dispersive channels, focusing on the case of Gaussian channels
with known statistics. Our scheme was based on suboptimal
tree search of a simplified noncoherent ML metric, and it
leveraged the M-algorithm in conjunction with fast update of
MMSE-estimated BEM parameters. The inclusion of a few
pilots, while not strictly necessary, was encouraged to facilitate
the use of rotationally symmetric symbol alphabets, the use
of facilitate low-complexity decoding, and the achievement
of N th

h -order diversity. Numerical experiments showed that
the proposed algorithm performed within a fraction-of-a-dB
from MLSD with genie-aided MMSE channel estimation, and
about1 dB from MLSD with perfect CSI. Furthermore, the
proposed algorithm was found to be robust to mismatch in
the assumed Doppler spread. The experiments also showed
that the proposed algorithm outperformed Kalman-PSP with
list-Viterbi, while at the same time requiring less complexity
(assuming channel lengthNh ≥ 4 and block lengthN < 100).
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