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Abstract— Multi-carrier modulation (MCM) is widely studied
as a communication technique for time- and frequency selective
(hence, doubly selective) channels. MCM schemes are usually
designed either to reduce decoding complexity, to exploit diversity
gains, or to enhance spectral efficiency. However, no known
scheme accounts for all three concerns. In this paper, we propose
a design metric based on complexity-constrained achievable rate
that accounts for all three of these concerns. We then use this
metric to characterize a trade-off between achievable rateand
implementation complexity, assuming frequency-domain process-
ing at the receiver. Finally, we use this metric to compare several
MCM schemes under the same level of receiver complexity.1

I. I NTRODUCTION

Multi-carrier modulation (MCM) has been extensively stud-
ied as a practical method for communication over channels
which exhibit both time-selective and frequency-selective fad-
ing, i.e., doubly selective (DS) fading. The principle challenge
faced when using MCM over these channels is effectively
combating a rich and quickly varying inter-symbol interference
(ISI) plus inter-carrier interference (ICI) response. Forreasons
of complexity, practical MCM reception strategies decode data
by taking into account only thesignificantISI/ICI coefficients.
This is more important in single-input multiple-output (SIMO)
systems, where the number of channel coefficients scales with
the number of receive antennas. For example, consider that,
in a 128 subcarrier system with2 receive antennas, there
will be 2 × 128 × 128 = 32768 ICI coefficients alone,
each of which can be expected to change substantially from
one MCM symbol to the next. If we consider ISI from
adjacent symbols, then the total number of channel coefficients
becomes3 × 32768 = 98304. Since the processing of so
many coefficients is generally impractical, it is common to
design the MCM system so that, say, all but adjacent subcarrier
ICI is suppressed. For such a system, there would be only
2 × 3 × 128 = 768 significant coefficients to consider. We
consider the use of only a few significant ISI/ICI coefficients
as a form ofcomplexity constraintat the receiver.

For a given set of channel spreading characteristics, the
number of significant ISI/ICI coefficients is a function of
the MCM pulse shape as well as the time-frequency spacing

1This work was supported by Motorola, Inc.

between the MCM pulses. The time-frequency spacing affects
the system’s spectral efficiency and hence must be chosen
with care. The pulse shape determines the time-frequency
dispersion of the pulses, which affects the number of signif-
icant ISI/ICI coefficients. It also determines the correlation
between these coefficients, which affects the diversity that can
be exploited by the decoder. In short, MCM schemes should
be designed with decoding complexity, spectral efficiency,as
well as diversity exploitation in mind.

We are not aware of any MCM design strategies which
attempt to address all three of these aspects simultaneously,
however. For example, the classical MCM schemes which
minimize ISI/ICI subject to (bi)orthogonal pulse constraints
(e.g., [1]–[4]) admit good ISI/ICI suppression only at relatively
low spectral efficiencies (as a consequence of the Balian-Low
Theorem [5]) and never consider coefficient correlation. As
another example, modern MCM schemes can attain much
higher spectral efficiencies while maintaining only a small
number of non-negligible ISI/ICI coefficients (e.g., [6]–[9])
but do so without explicit concern for ISI/ICI coefficient
correlation. As yet another example, so-called “maximum
diversity” pulses [10], [11] have been proposed at the priceof
low spectral efficiency and high implementation complexity.

In this paper, we propose a design metric that incorporates
all three design metrics, i.e., implementation complexityas
well as spectral efficiency and coefficient correlation. Specifi-
cally, we propose to measure theachievable rateof a generic
SIMO-MCM schemeunder a local-ICI processing constraint,
i.e., when decoding a subcarrier, only the significant ICI from
neighboring subcarriers is considered. Note that the number of
considered ICI coefficients determines the complexity of the
reception strategy.

We show the utility of the achievable metric in two ways.
First, we use the derived metric to characterize a trade-
off between achievable rate and implementation complexity
for MCM schemes. Next, we compare the performance of
select MCM schemes with receivers with the same level of
implementation complexity.

The paper is organized as follows: Sec. II describes the
system model, Sec. III presents the achievable rate metric,
Sec. IV considers uses of the proposed metric and Sec. V



concludes.
Notation: In the paper,(·)T to denote transpose, and(·)H

the conjugate transpose. TheK×K identity matrix is denoted
by IK and its lth column by eK(l). Additionally, [B]m,n

denotes the element in themth row andnth column of B,
where row/column indices begin with zero. Kronecker product
is denoted by⊗. Also, δl denotes the Kronecker delta with
argumentl, 〈·〉N the modulo-N operation, andC the set of all
complex numbers. Expectation is denoted byE(·) and auto-
covariance byΣb := E(bb

H) − E(b)E(bH). Finally, the
mutual information (MI) between two random entitiesX and
Y is denoted byI(X ; Y ). When conditioned on a realization
of the random entityZ, MI is denoted byI (X ; Y | Z).

II. SYSTEM MODEL AND RECEPTIONSTRATEGY

In this paper, we focus on a single-input multiple-output
(SIMO) MCM system withNr receive antennas andN subcar-
riers, and refer to it as a(Nr, N) SIMO-MCM system. In the
considered system, coding is done over large blocks of (say,
Nb) MCM symbols. Further, we assume that coding is done
independently for each subcarrier using i.i.d. (complex) Gaus-
sian codebooks, and that an average power constraint is en-
forced. Thus, in the considered(Nr, N) SIMO-MCM system,
the ith MCM symbol is s(i) = [s0(i), s1(i), · · · , sN−1(i)]

T ,
where sk(i) is the ith symbol of the codeword on thekth

subcarrier. The average power constraint and the use of i.i.d.
Gaussian codebooks implies that each MCM symbol is zero
mean i.i.d. complex Gaussian distributed with covariance
matrix Σs = IN . The components ofs(i) are then modulated
onto separate subcarriers using a (possibly non-rectangular)
MCM pulse shape.

The transmitted signal encounters a wireless channel en
route to each receive antenna. Each channel is Rayleigh
faded with a delay spread ofNh chips, a uniform delay-
power profile, a (chip normalized) single-sided maximum
Doppler spread offdTc, and satisfies the wide sense stationary
uncorrelated scattering (WSSUS) property [12]. In this paper,
we assume that these channels are statistically independent.

At each receive antenna, the received signal is demodulated
using another MCM pulse shape, and the resulting frequency
domain observation corresponding to transmitted MCM sym-
bol s(i) is r(i) := [r0(i), r1(i), · · · , rN−1(i)]

T , where the
entries ofrk(i) ∈ CNr correspond to thekth subcarrier at the
Nr receive antennas. It is assumed that ISI is negligible, i.e.,
that s(i) only influencesr(i) and has a negligible effect on
r(i1), when i1 6= i. This can be ensured by using guards to
suppress inter block interference (IBI) perfectly at the expense
of spectral efficiency, as in traditional cyclic prefix orthogonal
frequency division multiplexing (CP-OFDM) [13], [10], [14].
Alternatively, specially designed pulse shaped MCM (PS-
MCM) can be used to adequately (but not perfectly) suppress
IBI without sacrificing spectral efficiency as in [6], [8], [15].
Then, the observationr(i) can be expressed as

r(i) = H(i)s(i) + w(i), (1)

where w(i) ∈ C
NrN are samples of zero mean additive

complex Gaussian noise with covarianceΣw and H(i) ∈
CNrN×N is the SIMO frequency domain channel matrix
(SIMO-FDCM). The SIMO-FDCM can be obtained by

H =

Nr∑

kr=1

Hkr
(i)⊗eNr

(kr), (2)

In (2), Hkr
(i) ∈ CN×N is the subcarrier coupling matrix

(SCM) for the kth
r receive antenna where[Hkr,kt

(i)]
m1,m2

depicts the influence ofsm2
(i) on the observation for the

mth
1 subcarrier at thekth

r receive antenna. Thus, off-diagonal
entries of the SCM cause ICI. (See [6]–[8], [15] for an
expression relatingHkr

to the channel impulse response.) The
typical low-pass nature of Doppler spreading for the WSSUS
Rayleigh faded channel implies that the ICI due to a subcarrier
is significant only in observations for a few neighboring
subcarriers and is restricted to rather low levels outside this
neighborhood. The radius (in number of subcarriers) within
which a subcarrier causes significant ICI is called the ICI
spread,Dh. The ICI spread is much smaller than the number
of subcarriers for most MCM schemes. As a result, significant
entries of the SIMO-FDCMH(i) are located in a quasi-
block-banded region depicted in Fig. 1. Next, we describe a
low complexity local-ICI processing receiver that exploits the
structure of the SIMO-FDCM.

As a result of the coding strategy used, blocks ofNb

observation vectors are processed together and subcarriers are
decoded individually at the receiver. Inspired by minimum
mean squared error equalization and sequential interference
cancellation receivers for i.i.d. Rayleigh faded MIMO channels
[16], we design receiver processing along the same lines. That
is to say, in the reception strategy considered, local linear
combining is performed for the first subcarrier (k = 0) for
each of theNb blocks and the obtained symbol estimates are
used to decode information on the first subcarrier. Assuminga
judicious rate-allocation and consequent error free decoding,
the interference from the symbols on the first subcarrier can
be regenerated and removed from observations for neighboring
subcarriers on which it has significant influence. These steps
are then repeated for the second (k = 1) subcarrier, and so on.

Recall that each subcarrier influences observations for a few
neighboring subcarriers. We, thus, consider a receiver where
only observations for subcarriers within a radius ofDr subcar-
riers around that subcarrier,rk(i), are used in the reception
process,i.e. rk(i) :=

[
rT

<k−Dr>N
(i), · · · , rT

<k+Dr>N
(i)
]T

.
Thenrk(i) ∈ C(2Dr+1)Nr can be written as

rk(i) =

N−1∑

k′=0

hk,k′ (i)sk′(i) + wk(i), (3)

wherehk,k′ ∈ CNr(2Dr+1) is a vector with entries from the
SIMO-FDCM that captures the influence ofsk′ (i) on rk(i)
andwk(i) is a vector of noise samples with covarianceΣwk

that affectrk(i). Notice from Fig. 1 that only2(Dr +Dh)+1
subcarriers have significant influence onrk(i). In the proposed



receiver, only these(2D + 1)Nr × (2(Dr + Dh) + 1) channel
coefficients are used in processing for a given subcarrier (see
Fig. 1). Thus, we only cancel interference from neighbor-
ing subcarriers that have already been decoded. Thispartial
sequential interference cancellation(P-SIC) process can be
expressed as

yk(i) = rk(i) −
∑

k′∈K(k)

hk,k′ (i)sk′(i), (4)

where the index setK(k) is defined as

K(k) :=
˘

< k ± l >N : 1 ≤ l ≤ Dh + Dr

¯

∩ {l : l < k} .(5)

Next, the observations inyk(i) are linearly combined. Since
only the observations corresponding to subcarriers in the
neighborhood of any given subcarrier are combined, we call
this steplocal combining(LC). LC can be represented by

φk(i) = zH
k (i)yk(i), (6)

wherezk(i) is referred to as thelocal linear combiner(LLC).
The final expression forzk(i) will be derived in Sec. III.

Finally, notice that the integer parameterDr controls both
the performance (increasingDr increases the number of
observations used, enhancing performance) and the complexity
of local processing (since the complexity is dominated by the
O((2Dr + 1)3N3

r ) design of the LLC for each subcarrier). In
the sequel, we derive a metric to measure the performance of
a (Nr, N) SIMO-MCM system with local processing at the
receiver.

III. T HE ACHIEVABLE RATE METRIC

In this section, we focus on deriving the achievable rate
of the proposed local processing receiver. As each MCM
symbol is processed in identical fashion, we consider one
MCM symbol w.l.o.g and drop the MCM symbol indices for
brevity.

The mutual information (MI) between the observation and
the MCM symbol for such a system2 can be written using the
chain rule [17] as

I(r; s) = I(r; s0) +
N−1∑

k=1

I
(
r; sk | {sk′}k−1

k′=0

)
. (7)

Since, to save computation, onlyrk is used in demodulating
the kth subcarrier, the achievable rate of our(Nr, N) SIMO-
MCM system reduces to

c(Dr) := I(r0; s0) +

N−1∑

k=1

I
(
rk; sk | {sk′}k−1

k′=0

)
. (8)

An application of the data processing inequality [17] shows
that c(Dr) is a lower bound forI(r; s). An achievable lower
bound forc(Dr) is calculated here by bounding each term on
the r.h.s. of (8) from below. This lower bound emulates the
local processing strategy from Sec. II.

2We consider coherent communication. The mutual information calculated
here is conditioned on the realization ofH. However, we drop the condition-
ing on H from the notation for brevity.

The kth-subcarrier observation after P-SIC can be written,
from (3) and (4), as

yk = hk,ksk +
∑

k′∈K̄(k)

hk,k′sk′ + wk. (9)

In (9), the indices of the subcarriers that contribute interference
to yk are collected inK̄(k). Then

K̄(k) := {l : 0 ≤ l < N} \ (K(k) ∪ {k}) . (10)

Realize that P-SIC reduces interference, while leaving the
signal component unchanged, as seen in (9). Thus

I
(
yk, sk | {sk′}k′∈K(k)

)
< I

(
rk; sk | {sk′}k−1

k′=0

)
.(11)

Next, letzk ∈ C(2Dr+1)Nr be a LLC operating onyk. Then
LC in (6) can be written using (9) as

φk = zH
k hk,ksk +

∑

k′∈K̄(k)

zH
k hk,k′sk′ + zH

k wk. (12)

Since the ICI will be Gaussian,

I
(
zH

k yk, sk | {sk′}k′∈K(k)

)
= log (1 + γk(zk)) , (13)

whereγk(zk) is the SINR of thekth subcarrier after com-
bining with zk. As a result,γk(zk) can be expressed using
expectations over the joint source-noise distribution as

γk(zk) =
E
[
|zH

k hk,ksk|
2
]

E

[

∣
∣
∑

k′∈K̄(k)

zH
k hk,k′sk′ + zH

k wk

∣
∣
2

] (14)

=
zH

k hk,khH
k,kzk

zH
k

(

∑

k′∈K̄(k)

hk,k′hH
k,k′ + Σwk

)

zk

. (15)

In (15), Σwk
is the covariance of additive noise (and any

neglected IBI). It is well known that the MMSE combiner in
(16) maximizesγk and, consequently, the MI in (13).

z∗
k =




∑

k′∈K̄(k)

hk,k′hH
k,k′ + Σwk





−1

hk,k. (16)

In fact, MMSE combining is information lossless given that
wk is Gaussian distributed [16],i.e.

I
(
yk, sk | {sk′}k′∈K(k)

)
= log (1 + γk(z∗

k)) . (17)

Thus,z∗
k appears to be the obvious choice for the LLC. How-

ever, notice thatz∗
k is a function of channel coefficients for

subcarriers beyond the radius ofDr + Dh subcarriers around
the kth subcarrier. Thus, we use the following (suboptimal)
combiner instead:

z̃k =




∑

k′∈K̃(k)

hk,k′hH
k,k′ + Σwk





−1

hk,k. (18)

In (18), the setK̃(k) is defined as

K̃(k) := K̄(k) ∩ {< k ± l >N : 1 ≤ l ≤ Dr + Dh}. (19)



The intuition for usingz̃k is that, with proper choice ofDr,
the ICI due to symbols beyond a radius ofDr+Dh subcarriers
can be made small compared to the ICI due to symbols within
this radius. Then

I
(
z̃H

k yk, sk | {sk′}k′∈K(k)

)
= log (1 + γk(z̃k)) , (20)

and it is easily seen that

I
(
yk, sk | {sk′}k−1

k′=0

)
≥ log (1 + γk(z̃k)) . (21)

Using the discussion in this section, it is straightforwardto
show that

I(r, s) ≥ c(Dr) ≥
N−1∑

k=0

log (1 + γk(z̃k)) . (22)

Finally, averaging over channel realizations, we arrive at

EH [I(r, s)] ≥ EH

[
N−1∑

k=0

log (1 + γk(z̃k))

]

︸ ︷︷ ︸

C(Dr)

. (23)

Henceforth, we refer toC(Dr) in (23) as the achievable rate
metric (ARM).

IV. A PPLICATIONS OF THEARM

The ARM can be used to study various aspects of low-
complexity local-ICI processing on SIMO-MCM systems. Two
such examples follow. First, we present an approach to select
a suitableDr using the ARM in Sec. IV-A. Next, we compare
the performance of local processing on select MCM schemes
in Sec. IV-B.

A. Rate-Complexity Trade-off

In this section, we present an approach to select a suitable
value of the design parameterDr by characterizing the trade-
off between the achievable rate and complexity of local
processing. In the sequel, we refer to this trade-off as therate
complexity trade-off(RCT).

The previously defined ARM can be used to measure
the performance of a SIMO-MCM system as a function
of Dr. Meanwhile, the complexity of local processing is
O
(
(2Dr + 1)3N3

r N
)

per MCM-symbol, which is cubic in
Dr. Thus, RCT for a given SIMO-MCM system can be
described by the pair

(
Dr, C(Dr)

)
. The RCTs for various

(Nr = 2, N = 256) SIMO-MCM systems are plotted in
Fig. 2. In Fig. 2,MSINR refers to the jointly optimized max-
SINR pulses from [6], [15], whileGP refers to the MCM
scheme with Gaussian prototype pulses that are dilated to
minimize out-of-target ICI/ISI, andOFDM refers to standard
CP-OFDM. For this particular example, transmission is over
channels withNh = 16 equal power taps, each withfdTc =
0.016, at SNR20dB. This setup yields ICI spreadDh = 4.

Figure 2 shows similar RCT trends for each of the MCM
schemes. WhenDr ≤ Dh, the achievable rateC(Dr) grows
quickly in Dr. When Dr > Dh, however,C(Dr) grows
much more slowly inDr. Intuitively, this can be explained as

follows. WhenDr < Dh, increases inDr gather significantly
more signal energy, and hence lead to significantly higher
achievable rates. IncreasingDr beyond Dh gathers only
traces of additional signal energy, and hence only marginal
increases in achievable rate. In conclusion, the RCT “sweet
spot” corresponds toDr = Dh. For this value, the systems
tested support over90% of the maximum achievable rate. Yet,
the complexity incurred is less than0.5% of that for optimal
processing.

B. Comparison of MCM Schemes

We compare the rates achieved by local processing on the
same set of MCM schemes that were considered for the RCT
in Sec. IV-A. The MCM schemes are used on a(2, 128)
SIMO-MCM system, where transmission is over channels with
Nh = 16 chip delay spreads, uniform power profiles, and
fdTc = 0.008 (hence,Dh = 1). Local processing at the
receiver usesDr = Dh = 1. Each data point is an average of
measurements over103 channel realizations.

In Fig. 3, it is clear that the MSINR scheme outperforms
CP-OFDM, which, in turn, performs better than the Gaussian
prototype pulsed (GPP) scheme. Recall that as the SNR
increases, performance is limited by uncanceled out-of-band
ICI and IBI. The results in Fig. 3 can directly be related to
the out-of-band ICI/IBI suppression capabilities of theseMCM
schemes. For instance, the MSINR pulses provide the best
out-of-band ICI/IBI suppression, and consequently, support
the highest rate of the three. Also note that the GPP scheme
suppresses ICI better than CP-OFDM. However, CP-OFDM
suppresses IBI completely at the expense of spectral efficiency,
whereas, the the performance of GPP is hampered by IBI. For
our setup, the loss in rate due to the guards in CP-OFDM is
smaller than the rate loss due to uncanceled IBI in the GPP
scheme. Thus for our setup, CP-OFDM performs better than
GPP MCM.

In a nutshell, the schemes compared here are designed
according to different philosophies and have different spectral
efficiencies. Yet, the ARM provides afair means of comparing
them under the assumption of low-complexity reception.

V. CONCLUSION

In this paper, we derived an achievable rate metric to
measure the performance of local processing for SIMO-MCM
systems with a complexity constraint. The utility of the metric
was shown in two ways, by characterizing a trade-off between
achievable rate and implementation complexity, and by mak-
ing a fair comparison of local processing on various MCM
schemes with a complexity constraint.

REFERENCES

[1] B. Le Floch, M. Alard, and C. Berrou, “Coded orthogonal frequency
division multiplex,” Proc. IEEE, vol. 83, pp. 982–996, June 1995.

[2] R. Haas and J.-C. Belfiore, “A time-frequency well-localized pulse for
multiple carrier transmission,”Wireless Personal Commun., vol. 5, pp. 1–
18, 1997.

[3] W. Kozek and A. F. Molisch, “Nonorthogonal pulseshapes for multi-
carrier communications in doubly dispersive channels,”IEEE J. Select.
Areas In Commun., vol. 16, pp. 1579–1589, Oct. 1998.



����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

(Dh + 1) Dh

DhNr
(Dh + 1)Nr

1

Nr

hk,k

2(Dr + Dh) + 1

(2Dr + 1)Nr

Fig. 1. Approximate structure of SIMO-FDCM. Rectangle (in dotted lines)
indicates the channel coefficients used for local processing for the kth

subcarrier.

[4] T. Strohmer and S. Beaver, “Optimal OFDM design for time-frequency
dispersive channels,”IEEE Trans. Commun., vol. 51, pp. 1111–1122,
July 2003.

[5] I. Daubechies,Ten Lectures on Wavelets. SIAM, 1992.
[6] P. Schniter, “A new approach to multicarrier pulse design for doubly-

dispersive channels,” inProc. Allerton Conf. Commun., Control, and
Computing, Oct. 2003.

[7] P. Schniter, “Low-complexity equalization of OFDM in doubly-selective
channels,”IEEE Trans. Signal Processing, vol. 52, pp. 1002–1011, Apr.
2004.

[8] S. Das and P. Schniter, “A new pulse shaped frequency division mul-
tiplexing technique for doubly dispersive channels,” inProc. Asilomar
Conf. Signals, Systems and Computers, 2004.

[9] L. Rugini, P. Banelli, and G. Leus, “Block DFE and windowing for
doppler-affected OFDM systems,” inProc. IEEE Workshop Signal
Processing Advances in Wireless Commun., 2005.

[10] X. Ma and G. B. Giannakis, “Maximum-diversity transmissions over
doubly-selective wireless channels,”IEEE Trans. Inform. Theory,
vol. 49, pp. 1832–1840, July 2003.

[11] G. Leus, S. Zhou, and G. B. Giannakis, “Orthogonal multiple access over
time- and frequency-selective channels,”IEEE Trans. Inform. Theory,
vol. 49, pp. 1942–1950, August 2003.

[12] J. G. Proakis,Digital Communications. New York: McGraw-Hill,
4th ed., 2001.

[13] L. J. Cimini, Jr., “Analysis and simulation of a digitalmobile radio
channel using orthogonal frequency division multiplexing,” IEEE Trans.
Commun., vol. 33, pp. 665–765, July 1985.

[14] B. Muquet, M. De Courville, and P. Duhamel, “Cyclic prefixing or
zero padding for wireless multicarrier transmissions?,”IEEE Trans.
Commun., vol. 50, pp. 2136–2148, December 2002.

[15] S. Das and P. Schniter, “Max-SINR ISI/ICI-shaped multi-carrier com-
munication over the doubly dispersive channel,”IEEE Trans. Signal
Processing, 2006. Submitted.

[16] D. Tse and P. Viswanath,Fundamentals of Wireless Communication.
Cambridge University Press, 2005.

[17] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

D
r

A
ch

ie
va

bl
e 

R
at

e 
 (

B
its

/s
/H

z)

 

 

MSINR
OFDM
GP

D
r
 = D

h

Fig. 2. Achievable rate vs. equalization complexity (Dr) for cyclic prefix
OFDM, jointly optimized max-SINR MCM scheme, and Gaussian pulsed
MCM scheme for a(2, 256) SIMO-MCM system.
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