Iterative Frequency-Domain Equalization of Single-Carrier Transmissions over Doubly-Dispersive Channels

Phil Schniter and Hong Liu

November 8, 2004

Background:

- Consider communication over doubly-dispersive channels.
- Options:
 - 1. Single-Carrier Mod. with Time-Domain Equalization
 - Fast MMSE-DFE: $\mathcal{O}(N_h^2)$ ops/symbol for chan length N_h .
 - Low PAPR, no need for guard interval.
 - 2. Multi-Carrier Mod. with Freq-Domain Equalization
 - Includes ICI mitigation (unlike slow-fading case).
 - $\mathcal{O}(\log N)$ ops/symbol for block length N. $_{\rm [Schniter:TSP:04]}$
 - High PAPR, often requires guard interval!
 - 3. Single-Carrier Cyclic-Prefix with Freq-Domain Eq
 - $\mathcal{O}(\log N)$ ops/symbol for block length N. $_{\rm [Schniter:ASIL:04]}$
 - Low PAPR, requires guard interval!
- What about FDE for single-carrier modulation *without* guards?

The PS-FDM Equivalent via Virtual Subcarriers:

 Model input stream as a sequence of PN-length frames, and equate each frame with a rectangularly-windowed cyclic extension of the time-domain symbols {s_n(i)}^{PN-1}_{n=0} in that frame.

• Now define the *virtual subcarrier* sequence $\{t_k(i)\}_{k=0}^{PN-1}$:

$$t_k(i) = \frac{1}{\sqrt{PN}} \sum_{n=0}^{PN-1} s_n(i) e^{-j\frac{2\pi}{N}kn}$$

• Thus, the single carrier Tx is equivalent to a *pulse-shaped frequency* division multiplexing (PS-FDM) Tx that communicates $\{t_k(i)\}_{k=0}^{PN-1}$ using a rectangular pulse and 0-length prefix.

Receiver Pulse-Shaping:

- Objective:
 - Want to make \mathcal{H}_{df} sparse for low-complexity detection.
 - Interpretation: virtual-subcarrier ICI-response "shortening".
 - Reminiscent of ISI-shortening for single-carrier MLSD.
- Recall time-domain windowing = Doppler-domain convolution!

Frequency-Domain Equalization:

- For now, decouple equalization from decoding (for simplicity).
- With successful pulse design, system model becomes

- \mathcal{H}_{df} has a banded structure,
- \boldsymbol{w} is dominated by freq-domain noise.
- s and t are related through the DFT.
- Equalization strategy leverages three essential properties:
 - 1. Banded structure of $\mathcal{H}_{df}\text{,}$
 - 2. Fast algorithm for DFT (i.e., the FFT),
 - 3. Finite alphabet property of s.

Algorithm requiring $\mathcal{O}(D^2 \log N)$ operations/symbol:

```
L^{(0)}(s_k) = 0 \ \forall k
for i = 0 \dots
                   for k = 0 ... N - 1,
                                   \bar{s}_{k}^{(i+1)} = \tanh(L^{(i+1)}(s_{k})/2)v_{k}^{(i+1)} = 1 - (\bar{s}_{k}^{(i+1)})^{2}
                   end
                  \bar{t}^{(i)} = F\bar{s}^{(i)}
                   for k = 0...N - 1.
                                    \boldsymbol{g}_{k}^{(i)} = \left( \boldsymbol{\mathcal{H}}_{k} \boldsymbol{F} \boldsymbol{\mathcal{D}}(\boldsymbol{v}^{(i)}) \boldsymbol{F}^{H} \boldsymbol{\mathcal{H}}_{k}^{H} + \sigma^{2} \boldsymbol{C}_{k} \boldsymbol{C}_{k}^{H} \right)^{-1} \boldsymbol{\mathcal{H}}_{k} \boldsymbol{F} \boldsymbol{\mathcal{D}}(\boldsymbol{v}^{(i)}) \boldsymbol{F}^{H} \boldsymbol{i}_{k}
                                    \hat{t}_{k}^{(i)} = \bar{t}_{k}^{(i)} + \boldsymbol{g}_{k}^{(i)H}(\boldsymbol{x}_{k} - \boldsymbol{\mathcal{H}}_{k}\boldsymbol{\bar{t}}^{(i)})
                   end
                 egin{aligned} oldsymbol{Q}^{(i)} &= oldsymbol{F}^H \Big( \sum_{k=0}^{N-1} oldsymbol{\mathcal{H}}_k^H oldsymbol{g}_k^{(i)} oldsymbol{i}_k^H \Big) oldsymbol{F} \ oldsymbol{P}^{(i)} &= oldsymbol{F}^H \Big( \sum_{k=0}^{N-1} oldsymbol{C}_k^H oldsymbol{g}_k^{(i)} oldsymbol{i}_k^H \Big) oldsymbol{F} \end{aligned}
                   \hat{\mathbf{s}}^{(i)} - \mathbf{F}^H \hat{\mathbf{f}}^{(i)}
                   for k = 0 ... N - 1,
                                   L^{(i+1)}(s_k) = L^{(i)}(s_k) + 4 \frac{\operatorname{Re}\{Q_{k,k}^{(i)}(\hat{s}_k^{(i)} - \bar{s}_k^{(i)})\} + |Q_{k,k}^{(i)}|^2 \bar{s}_k^{(i)}}{\boldsymbol{q}_k^{(i)H} \mathcal{D}(\boldsymbol{v}^{(i)})\boldsymbol{q}_k^{(i)} - |Q_{k,k}^{(i)}|^2 v_k^{(i)} + \sigma^2 \|\boldsymbol{p}_k^{(i)}\|^2}
                   end
```

end

The Need for Frame Overlap:

Windowing causes uneven distribution of symbol errors across frame:

The mid-frame symbol estimates are saved as "final" estimates and their LLRs are used to initialize the next frame. Frames overlap so that all symbols can be reliably estimated.

Phil Schniter

Simulation Details:

Channel/Modulator:

- WSSUS Rayleigh fading, uniform delay profile, length $N_h = 64$.
- Uncoded BPSK.

Receiver:

- Frame length $PN = 4N_h$, frame overlap factor P = 2.
- ICI radius $D = \lceil f_{\mathsf{d}} T_s P N \rceil$.
- 10 iterations.

Reference:

- LTV-MMSE-DFE: Update rate $\frac{1}{T_s}$, $\mathcal{O}(N_h^2)$ ops/symbol.
- LTI-MMSE-DFE: Update rate $\frac{1}{N_hT_s}$, $\mathcal{O}(N_h)$ ops/symbol.

Summary:

- Freq-domain equalization in doubly-selective channels must deal with ICI as well as ISI.
- We proposed a two-stage frequency-domain equalizer:
 - 1. SINR-optimal windowing for ICI-response shortening,
 - 2. Iterative MMSE estimation leveraging finite alphabet and FFT.
- Complexity $O(\log N)$ ops/symbol, similar to classical frequency-domain equalization approaches (e.g., OFDM).
- Performance equal to LTV-MMSE-DFE at 2 iterations, though much less complex.
- Performance far beyond LTV-MMSE-DFE after 10 iterations, and also less complex when $f_dT_s < 0.006$.
- Soft decoding can be easily incorporated.