
On frequency-domain implementations of
filtered-gradient blind deconvolution algorithms

Marcel Joho1 & Philip Schniter2

1Phonak Inc., Champaign, IL, USA, (joho@ieee.org)
2Dept. of EE, The Ohio State University, Columbus, OH, USA (schniter.1@osu.edu)

36th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, Nov. 3-6, 2002

Abstract

This paper describes an efficient realization of an adaptive single-
channel blind deconvolution algorithm. The algorithm uses fast
convolution and correlation techniques, operates mainly in the
frequency domain, and the adaptation of the deconvolution filter
is based on the natural gradient learning algorithm. The proposed
algorithm is compared to other methods via computational com-
plexity analysis and simulations.

1 Introduction

1.1 Problem description
Blind deconvolution (BD) is a problem posed by many applica-
tions related to acoustics or communications, e.g., dereverbera-
tion of a speech signal or equalizing a dispersive communication
channel. The general setup of the single-channel blind deconvo-
lution problem is shown in Fig. 1. The source signal sequence
s , {st} is filtered by a causal filter a , {a0, a1, . . .}. This
process can be described by a convolutional sum

xt = (a ∗ s)t + nt =
∑∞

n=0
anst−n + nt (1)

where x , {xt} is the sensor signal sequence and n , {nt}
is the additive sensor noise sequence. In a blind setup, only x is
accessible to the algorithm, whereas s, a, and n are unknown.

In a blind deconvolution problem we aim at finding a deconvo-
lution filter w , {wn}, such that the output of the deconvolution
process

ut =
∞

∑

n=−∞

wnxt−n =
∞

∑

n=−∞

(gnst−n + wnnt−n) (2)

retrieves a waveform-preserving estimate of s, possibly delayed.
Often either a zero-forcing or a MMSE deconvolution filter is the
preferred solution. A zero-forcing filter forces the global-system
g , {gn} = w ∗ a to become a Kronecker delta, regardless of
the sensor-noise amplification w ∗n at the output u. On the other
hand, the MMSE filter best reconstructs the source signal in the
mean-square sense. For a real-time application, we require w to
be causal and of finite length (FIR). Furthermore, we assume that
s is a non-Gaussian distributed sequence.

1.2 Preliminary work
In communications, early publications in the field of blind chan-
nel equalization are [1–4]. In geophysics the term blind decon-
volution is more common, as the interest mainly lies in obtaining

� �

�

�������	��
������������

�

� ���������������	� �����

! "

Figure 1: Setup of the blind deconvolution problem.

a model of the system a or its stable inverse a−1, whereas in
data communications the term blind equalization is more com-
monly used, as the main interest lies in retrieving the transmit-
ted data s. Most of the those algorithms are adaptive and often
show a relatively slow convergence behavior, depending on the
characteristics of the unknown channel a and also the degree of
non-Gaussianity [5] of s. All of these algorithms operate in the
time-domain and the gradient is usually derived by a correlation
between the input signals and the output signals passed through a
non-linearity.

Fundamental to all work for adaptive algorithms for complex
signals and filter coefficients was the work by Widrow et al. [6].
Frequency-domain adaptive algorithms which made use of fast
convolution techniques were first presented by Ferrara [7] and
Clark et al. [8,9]. A good overview of frequency-domain adaptive
filter algorithms was given by Shynk in [10].

Early implementations which applied frequency-domain
adaptive-filter techniques to time-domain blind algorithms are
presented in [11–15].

Later on, Amari et al. derived in [16] a time-domain blind-
deconvolution algorithm based on the natural-gradient learning
algorithm. In contrast to the blind-deconvolution algorithms pre-
viously mentioned, a filtered version of the gradient appears in
the update equation. Originally, the natural gradient learning al-
gorithm was applied first in blind source separation [17] and be-
come very attractive because of having the so-called equivariant
property as opposed to adaptive algorithms based on the regu-
lar gradient. For algorithms which enjoy the equivariant prop-
erty, the convergence depends only on the initial global system
g(0) = w(0) ∗ a where w(0) denotes the initial deconvolution
filter [18].

Efficient frequency-domain implementations of the natural
gradient blind deconvolution algorithm were first derived by
Lambert [19, 20]. Shortly afterwards, Douglas and Kung pre-
sented in [21] a different implementation of a blind deconvolu-

tion algorithm, also using the natural gradient for the update and
operating in the frequency domain.

In the following, we present a different and novel implemen-
tation of a natural-gradient based blind deconvolution algorithm.
In contrast to the algorithm proposed in [21], the presented algo-
rithm uses fewer FFT / IFFT operations at the expense of larger
vectors and, hence, FFT sizes. Moreover, the proposed algorithm
does not reuses output samples from previous blocks, which were
computed with a different filter, for the update. Therefore the al-
gorithm does not relay on the assumption that the deconvolution
filter changes only slowly between two consecutive blocks.

The outline of the paper is as follows: In Section 2 we describe
the time domain algorithm, in Section 3 we describe the novel
frequency domain algorithm, in Section 5 we give a complexity
analysis, in Section 6 we give a simulation example, and finally in
Section 7 conclusions are drawn. In Appendix A we summarize
some properties of circulant matrices.

1.3 Notation
The notation used throughout this paper is the following: Vectors
are written in lower case, matrices in upper case. Matrix and
vector transpose, complex conjugation and Hermitian transpose
are denoted by (.)T , (.)∗, and (.)H = ((.)∗)T , respectively. The
element-wise multiplication of two vectors or matrices is denoted
by ¯. The identity matrix is denoted by I, a vector or a matrix
containing only zeros by 0. Vector or matrix dimensions are given
in subscript. The DFT matrix F is defined as

[FC]mn , e−j 2π

C
mn (m, n = 0 . . . C − 1) (3)

F
−1
C = 1/C · FH

C = 1/C · F∗
C (4)

where C is the DFT or FFT size. Circulant and diagonal matrices
are denoted as Ã and Ā, respectively, and ā , diag(Ā) denotes
a vector containing the diagonal elements of Ā. The operation
Ã , C(ã) defines a circulant matrix with ã in its first column
and ã , C−1(Ã) is the corresponding inverse operation (see
Appendix A for more details).

The continuous time and the discrete sample time are denoted
by tc and (t) , t · Ts, respectively, where Ts is the sampling
period. The block index is denoted by [k] , (k · L) where L is
the block length (block forward shift).

2 Time-domain implementation

2.1 Sample-wise filtering and update
We start with the single-channel time-domain blind deconvolution
algorithm (TDBD) which was proposed by Amari et al. in [16].
This algorithm is based on the natural gradient learning method.
At time sample t we have

ut =
∑N

n=0
wn(t) xt−n (5)

vt =
∑N

n=0
w∗

N−n(t) ut−n (6)

yt = g(ut) (7)

wn(t + 1) = wn(t) + µ (wn(t) − yt−Nv∗
t−n) , n ∈ [0, N]

(8)

where u , {ut} is the output signal, and {vt} is an intermedi-
ate signal which is used for the adaptation. The deconvolution
filter {wn} is an FIR filter of length N + 1. The nonlinearity
g(.) depends on the pdf of the unknown source signal s. Based
on a local convergence analysis, g(.) is often suggested to be the
score function of the pdf of s [22]. However, simulations have
shown that the convergence behavior of the algorithm often is
relatively robust to some variation of g(.). Therefore, common
choices are g(ut) ∝ sign(ut) for super-Gaussian signals and
g(ut) ∝ ut|ut|

2 for sub-Gaussian signals. For convenience,
we require that g(0) ≡ 0. The algorithm (5) to (8) copes with
complex-valued signals and coefficients.

2.2 Block-wise filtering and adaptation
Alternatively, we can carry out the filtering and the adaptation of
the TDBD algorithm in a block-wise manner. At block k, t =
[kL − L + 1, kL], we have

ut =
∑N

n=0
wn[k] xt−n (9)

vt =
∑N

n=0
w∗

N−n[k] ut−n (10)

yt = g(ut) (11)

wn[k + 1] = (1 + µ) wn[k] −
µ

L

kL
∑

t=kL−L+1

yt−Nv∗
t−n (12)

where L is the block size (block-wise forward shift). The block-
wise update in (12) is equal to the average of the sample-wise
update in (8) over an entire block of L samples. We will refer to
the algorithm (9) to (12) as the block time-domain blind deconvo-
lution algorithm (BTDBD).

In the following, we will restrict ourselves to the case where
N = L, which will simplify the derivation. We rewrite (9), (10),
and (12) for block k in matrix form:

ukL−3L+1

...
ukL

=

wL· · ·· · ·w0

. . .
. . .

. . .
. . .

wL· · ·· · ·w0

·

xkL−4L+1

...
xkL

(13)

vkL−2L+1

...
vkL

=

w0· · ·· · ·wL

. . .
. . .

. . .
. . .

w0 · · ·· · ·wL

∗

·

ukL−3L+1

...
ukL

(14)

w0[k + 1]
...

wL[k + 1]

= (1 + µ)

w0[k]
...

wL[k]

−
µ

L

vkL−L+1 · · · vkL

vkL−L

. . .
...

...
. . .vkL−L+1

vkL−2L+1· · · vkL−L

∗

·

ykL−2L+1

...
ykL−L

.

(15)

In (13) and (14) we have omitted the block index [k] for the filter
coefficients and, hence, wn stands for wn[k] and

wk , (w0[k], . . . , wL[k])T . (16)

In block k the update equation (12) needs to be evaluated for
t = kL − L + 1, . . . , kL. This determines the dimensional-
ity of (15). In (15) we need the latest 2L samples of v, i.e.,
{vkL−2L+1, . . . , vkL}, which then determines the dimensional-
ity of the LHS vector in (14). For the same reason, the LHS vector
in (13) needs to be the same as the RHS vector in (14). Eq. (13)
and (14) guarantee that all signal samples used for the update in
(15) are derived from the current wk. The equations (13), (14),
and (15), together with yt = g(ut), yield the BTDBD algorithm
in matrix form.

3 Frequency-domain implementation

In the following, we employ fast convolution techniques, to re-
duce the computationally complexity of the BTDBD algorithm.
To this end, we define the following vectors of length L:

xk , (xkL−L+1, . . . , xkL)T (17)

uk , (ukL−L+1, . . . , ukL)T (18)

vk , (vkL−L+1, . . . , vkL)T (19)

yk , g(uk) . (20)

where the nonlinearity function g(.) is applied on each vector
element. We also define the following vectors of length 4L:

w̃k , (wT
k ,0T

3L−1)
T (21)

x̃k , (xT
k−3,x

T
k−2,x

T
k−1,x

T
k)T (22)

ũk , (u̇T
k−3,u

T
k−2,u

T
k−1,u

T
k)T (23)

ṽk , (v̇T
k−2,v

T
k−1,v

T
k , v̇T

k−4)
T (24)

ỹk , (0T
L ,0T

L ,yT
k−1,0

T
L)T . (25)

We denote a vector that can contain arbitrary elements with a dot
e.g., u̇k−3. Furthermore, we define the following circulant matri-
ces

W̃k , C(w̃k) (26)

Ṽk , C(ṽk) (27)

and the projection matrices

Pw ,

[

IL+1 0

0 03L−1

]

(28)

Py ,

02L 0 0

0 IL 0

0 0 0L

 . (29)

Since all the matrices involved in the equations (13) to (15) are
Toeplitz, we can enlarge them to 4L × 4L circulant matrices,
such that we can embed (11) and (13) to (15) for block k in the
following equations

ũk = W̃k x̃k (30)

ṽk = W̃
H
k ũk (31)

ỹk = g(Py ũk) (32)

w̃k+1 = (1 + µ) w̃k −
µ

L
PwṼ

H
k ỹk . (33)

Recall that we required g(0) ≡ 0. Therefore ỹk will have the
zero padded structure as given in (25). Since (30), (31), and (33)
describe now circular convolutions, fast convolution techniques
can now be employed. Towards this end, we define the following
vectors of length C =4L:

w̄k , FC w̃k = FFT(w̃k) (34)

x̄k , FC x̃k = FFT(x̃k) (35)

ūk , FC ũk = FFT(ũk) (36)

v̄k , FC ṽk = FFT(ṽk) (37)

ȳk , FC ỹk = FFT(ỹk) . (38)

Consequently we have from (34)

w̃k , F
−1

w̄k = IFFT(w̄k) . (39)

The same is also true for reversing (35) to (38).
We now wish to transform (30), (31), and (33) into the fre-

quency domain. To this end, we premultiply the equations on
both side with the Fourier matrix F. We begin with (30)

ūk = FW̃k F
−1

F x̃k = W̄k x̄k (40)

where W̄k , FW̃k F−1. Note that from (56) we know that
W̄k = diag(Fw̃k) is a diagonal matrix. Applying similar steps
to (31) and using (57) we get

v̄k = FW̃
H
k F

−1
F ũk = W̄

∗
k ūk . (41)

Transforming (32) into the frequency domain gives

ȳk = F g
(

Py F
−1

ūk

)

(42)

and applying property (57) to (33) gives

w̄k+1 = (1 + µ) w̄k −
µ

L
FPw F

−1
FṼ

H
k F

−1
F ỹk (43)

= (1 + µ) w̄k −
µ

L
FPw F

−1
V̄

∗
k ȳk . (44)

Equations (40), (41), and (44) can be rewritten as

ūk = w̄k ¯ x̄k (45)

v̄k = w̄
∗
k ¯ ūk (46)

w̄k+1 = (1 + µ) w̄k −
µ

L
FPwF

−1 (v̄∗
k ¯ ȳk) . (47)

Alternatively, since Pww̃k = w̃k holds, we can reformulate (47)
as

w̄k+1 = FPw F
−1

(

(1 + µ) w̄k −
µ

L
v̄
∗
k ¯ ȳk

)

. (48)

We will refere to (45), (46), (42), and (48) as the FDBD-I algo-
rithm The complete implementation of the filter and adaptation
equations is summarized in Fig. 2 and the block diagram is shown
in Fig. 3. We have preferred to use (48) over (47), which has the
advantage that wrap-around errors do not accumulate in w̃k if the
projection operation FPw F−1 is not carried out in each block
(alternated filter projections [23]).

In the derivation of the proposed algorithm we have restricted
ourselves to the case with N =L and C =4L. However, different
choices for N are possible as long as C ≥ L + 3(N − 1).

FDBD-I

Definitions:

Pw ,

[

IL+1 0

0 03L−1

]

Py ,

02L 0 0

0 IL 0

0 0 0L

Initialization:

w0 , (w0[0], . . . , wL[0])T

w̃0 , (wT
0 ,0T

3L−1)
T

w̄0 , FFT(w̃0)

For each loop k do:

Filtering:

xk , (xkL−L+1, . . . , xkL)T

x̃k , (xT
k−3,x

T
k−2,x

T
k−1,x

T
k)T

x̄k = FFT(x̃k)

ūk = w̄k ¯ x̄k

ũk , (u̇T
k−3,u

T
k−2,u

T
k−1,u

T
k)T = IFFT(ūk)

Adaptation:

v̄k = w̄
∗
k ¯ ūk

ỹk , (0T
L ,0T

L ,yT
k−1,0

T
L)T = g(Py ũk)

ȳk = FFT(ỹk)

w̄k+1 = FFT
(

Pw IFFT
(

(1 + µ) w̄k −
µ

L
ȳk ¯ v̄

∗
k

))

Figure 2: FDBD-I : Algorithm (FFT size C =4L).

4 FDBD-I: 25% overlap

The FDBD-I algorithm as proposed has a 75% overlap between
the samples of two subsequent input vectors x̃k−1 and x̃k. There-
fore, an output block uk is computed, in fact, three times, namely
in block k, k + 1, and k + 2. On the other hand, the vector yk−1,
which is used for updating the filter coefficients, is computed only
once, namely in block k. Now there is also the possibility to oper-
ate the FDBD-I with only 25% overlap between two subsequent
input vectors, i.e. (22) is replaced by

x̃k , (xT
3k−3,x

T
3k−2,x

T
3k−1,x

T
3k)T (49)

such that (23) becomes

ũk , (u̇T
3k−3,u

T
3k−2,u

T
3k−1,u

T
3k)T . (50)

The 3L output samples (uT
3k−2,u

T
3k−1,u

T
3k)T from ũk are now

computed once only. Essentially, this is equivalent to computing

F
F
T

I
F
F
T

block delay

F
F
T

F TF

F TFI

����� �

��	� �
��

�� � � �

��
��

�� �

���	� �	�

�� �����

�� �
����� �

����� �

����� �

�!

�#"

Figure 3: FDBD-I: Block diagram.

the filtering and adaptation steps only at blocks {. . . , k−3, k, k+
3, . . .}. More details about when which block is computed is
given in Fig. 4.

This simple trick reduces the computational complexity by a
factor of three, as with the same number of operations we derive
three times more output samples. One drawback is that only a
third of the data is used now for the update, as yk−1 is not com-
puted for every k. This might be a problem in the initial stage of
the adaptation if fast convergence is required. Since the conver-
gence rate depends primarily on the number of update iterations,
the absolute convergence rate is about three times slower, which
might still be fast enough to track a slowly time-varying system.
Furthermore, the latency through the system, caused by process-
ing delay, increases from 2L to 6L samples.

5 Complexity analysis

In this section we analyze and compare the computational com-
plexity of the BTDBD, FDBD-DK, FDBD-I, and a FDBD-BG
algorithm. The FDBD-BG is a frequency-domain implemen-
tation of a blind deconvolution based on a Bussgang method,

$&%('*)+$&%('*,
- %('/. - %('*,- %('*)

0&%('*)

1 %2'/3 1 %('/. 1 %('*) 1 %('*,

1 % 1 %2465 1 %24*,1 %24/7

- %24/7 - %24*,- %2465
$&%24*,$&%24/7

0&%24/7
$&%$&%('65
- %- %('/7 - %2'85

0&%('65

1 %('651 %('/71 %('*, 1 %

9;: <>=@?�A9;: <>=@?	ACBED 9;: <>=@?�A!FGD

Figure 4: Signal computation of FDBD-I with 25% overlap be-
tween two subsequent input vectors x̃k−1 and x̃k.

10
1

10
2

10
3

10
−2

10
0

ρ a

FDBD−BG
FDBD−DK
FDBD−I (75%)
FDBD−I (25%)

10
1

10
2

10
3

10
−2

10
0

block length L

ρ m

FDBD−BG
FDBD−DK
FDBD−I (75%)
FDBD−I (25%)

Figure 5: Relative computational complexity of the FDBD-BG,
FDBD-DK, and FDBD-I algorithms compared to the BTDBD al-
gorithm: Real additions (top) and real multiplications (bottom).

e.g., CMA. We assume having complex signals and also com-
plex filter coefficients. We define the complexity as the num-
ber of real additions Ar and real multiplications Mr . We do
not encounter the complexity of the nonlinearity g(.), as some-
times it can be implemented very efficient in hardware e.g. the
sign(.)-function for a super-Gaussian source signal. The com-
putational complexity of different algorithms is given in Table 1.
The complexity of one FFT or IFFT operation, F , was counted as
F =C log CAc+C/2 log CMc =3C log CAr+2C log CMr ,
where Ac and Mc denote one complex addition and multiplica-
tion, respectively.

To compare the computational complexities between the algo-
rithms, we use the BTDBD as the reference. Then we calculate
the ratios between the number of real additions and real multipli-
cations to obtain L output samples, i.e.,

ρa =
Ar(FDBD)

Ar(BTDBD)
(51)

ρm =
Mr(FDBD)

Mr(BTDBD)
. (52)

The complexity reductions ρa and ρm are presented in Fig. 5 for
different block sizes L. The complexity reduction for the FDBD-I
with 25% overlap is by a factor 3 larger than for 75% overlap.

Table 1: Total computational complexity in real operations to ob-
tain L output samples for each of the algorithms.

Algorithm Ar Mr

TDBD 12L2 +8L 16L2+16L
BTDBD 12L2+8L 12L2+12L+4N+4
FDBD-DK 48L log L + 64L 32L log L + 64L
FDBD-I (75%) 60L log L + 152L 40L log L + 144L
FDBD-I (25%) 20L log L + 152/3 L 40/3 L log L + 48L
FDBD-BG 30L log L + 42L 20L log L + 30L

0 100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

IS
I

[d
B

]

iteration k

ISI for 4−QAM source signal (SNR = 25dB)

FDBD−I
FDBD−DK
FDBD−CMA

Figure 6: Convergence comparison between FDBD-I (75% over-
lap), FDBD-DK, and FDBD-CMA. The input SNR is 25 dB.

0 20 40 60 80 100 120
−1

0

1

2

tap n
w

n

real part
imag. part

Figure 7: Real and imaginary part of w after convergence.

6 Simulation example

In the following, we give a simulation example to analyze the be-
havior of the algorithm proposed. The unknown non-minimum-
phase channel is a ∝ {1+4i,−1+5i, 11+2i, 17+11i, 1−20i}
and normalized to ‖a‖=1. The source signal s is a 4-QAM sig-
nal, the input SNR is 25dB, the block size L is 128, and the non-
linearity is g(ut) = ut |ut|

2. We compared the convergence be-
havior between the FDBD-I, the FDBD-DK and a FDBD-CMA
algorithm. The FDBD-CMA is a frequency-domain implemen-
tation of the well-known constant modulus algorithm. The step
sizes are µ = 0.08 and µ = 0.02 for the FDBD-I and FDBD-
DK algorithm, and µ = 0.2 and µ = 0.05 for the FDBD-CMA
algorithm. The larger step sizes are chosen to achieve a maxi-
mally fast initial convergence without becoming unstable in all
trials. The performance criteria is the residual intersymbol inter-
ference (ISI), ISI (g) , (

∑

n |gn|
2)/(maxn |gn|

2) − 1, of the
global system g. The curves shown in Fig. 6 are averages over
30 trials. The real and imaginary part of the deconvolution filter
after convergence is shown in Fig. 7.

We observe that the FDBD-CMA has overall a slower conver-
gence than FDBD-I and FDBD-DK algorithms. When compar-
ing the FDBD-I with the FDBD-DK, we see that for small step
sizes µ both have almost the same convergence behavior. How-
ever, for larger step sizes, the FDBD-DK becomes slightly slower
than the FDBD-I algorithm and shows a higher residual ISI in the
steady state. Other simulations with large step sizes have shown
further, that the FDBD-I is less likely to become unstable than
the FDBD-DK and FDBD-CMA algorithm for low SNR scenar-
ios. Simulations with the FDBD-I and FDBD-DK algorithm for
super-Gaussian source signals and g(ut)= sign(ut) have shown
similar behaviors. Note, the constant modulus algorithm is unable
to deconvolve the channel for super-Gaussian source signals.

7 Conclusions

We have presented a new way to implement the time-domain
blind deconvolution algorithm from Amari et al. [16] efficiently
in the frequency domain. The algorithm is based on the natural
gradient learning method and, depending on the chosen nonlin-
earity, can handle either sub- or super-Gaussian source signals.

Furthermore, an analysis of the computational complexity has
revealed that the Douglas-Kung algorithm [21] requires about
30% less operations than the proposed algorithm. This is because
the Douglas-Kung algorithm makes the underlying assumption
that the deconvolution filter changes only slowly from one block
to the other, and therefore not all signal samples involved in the
update are recomputed with the current filter. However, for large
step sizes, where this assumption does not hold, the new algo-
rithm showes a faster convergence and a more stable behavior.
Possible applications of the algorithm are in acoustics, e.g. tele-
conferencing or hearing aids, as fast initial convergence and fast
tracking is always of major importance.

References
[1] Y. Sato, “A method of self-recovering equalization for multilevel

amplitude-modulation systems,” IEEE Trans. Computers, pp. 679–
682, June 1975.

[2] A. Benveniste, M. Goursat, and G. Ruget, “Robust identification of
a nonminimum phase system: Blind adjustment of a linear equalizer
in data communications,” IEEE Trans. Automat. Contr., vol. AC-25,
no. 3, pp. 385–399, June 1980.

[3] D. N. Godard, “Self-recovering equalization and carrier tracking in
two-dimensional data communication systems,” IEEE Trans. Com-
mun., vol. COM-28, no. 11, pp. 1867–1875, Nov. 1980.

[4] J. R. Treichler and B. G. Agee, “A new approach to the multi-
path correction of constant modulus signals,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-31, no. 2, pp. 331–344, Apr.
1983.

[5] D. Donoho, “On minimum entropy deconvolution,” Applied Time
Series Analysis II, pp. 565–608, 1981.

[6] B. Widrow, J. McCool, and M. Ball, “The complex LMS algo-
rithm,” Proc. IEEE, pp. 719–720, Apr. 1975.

[7] E. R. Ferrara, “Fast implementations of LMS adaptive filters,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, no. 4, pp.
474–475, Aug. 1980.

[8] G. A. Clark, S. K. Mitra, and S. R. Parker, “Block implementation
of adaptive digital filters,” IEEE Trans. Circuits Syst., vol. CAS-28,
no. 6, pp. 584–592, June 1981.

[9] G. A. Clark, S. R. Parker, and S. K. Mitra, “A unified approach
to time- and frequency-domain realization of FIR adaptive digital
filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
31, no. 5, pp. 1073–83, Oct. 1983.

[10] J. J. Shynk, “Frequency-domain and multirate adaptive filtering,”
IEEE Signal Processing Mag., pp. 14–37, Jan. 1992.

[11] C. K. Chan, M. R. Petraglia, and J. J. Shynk, “Frequency-domain
implementations of the constant modulus algorithm,” in Proc. Asilo-
mar Conf. Signals, Syst., Comput., Pacific Grove, CA, Oct. 30 –
Nov. 1, 1989, vol. II, pp. 663–669.

[12] M. Ready, S. H. Goldberg, and R. Gooch, “Architecture considera-
tions for frequency domain adaptive equalizers,” in Proc. Asilomar
Conf. Signals, Syst., Comput., Pacific Grove, CA, Oct. 30 – Nov. 1,
1989, vol. II, pp. 663–669.

[13] J. J. Shynk, C. K. Chan, and M. R. Petraglia, “Blind adaptive filter-
ing in the frequency domain,” in Proc. ISCAS, New Orleans, LA,
May 1–3, 1990, vol. I, pp. 275–278.

[14] J. J. Shynk, “Comparative performance study of several blind equal-
ization algorithms,” Proc. SPIE, vol. 1565, pp. 102–117, Apr. 3–4,
1991.

[15] J. Benesty and P. Duhamel, “Fast constant modulus adaptive al-
gorithm,” IEE Proceedings-F, vol. 138, no. 4, pp. 379–387, Aug.
1991.

[16] S.-I. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, “Novel
on-line adaptive learning algorithms for blind deconvolution using
the natural gradient approach,” in Proc. SYSID, Kitakyushu, Japan,
July 8–11, 1997, pp. 1057–1062.

[17] S.-I. Amari, A. Cichocki, and H. H. Yang, “A new learning algo-
rithm for blind signal separation,” Advances in Neural Information
Processing Systems, vol. 8, pp. 757–763, 1996.

[18] S. C. Douglas, “On equivariant adaptation in blind deconvolution,”
in Proc. Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA,
Nov. 3–6, 2002.

[19] R. H. Lambert, Multichannel Blind Deconvolution: FIR Matrix
Algebra and Separation of Multipath Mixtures, Ph.D. thesis, Uni-
versity of Southern California, 1996.

[20] R. H. Lambert and C. L. Nikias, “Blind deconvolution of multi-
path mixtures,” in Unsupervised Adaptive Filtering, Volume I: Blind
Source Separation, S. Haykin, Ed. 2000, pp. 377–436, John Wiley
& Sons.

[21] S. C. Douglas and S.-Y. Kung, “Gradient adaptive algorithms for
contrast-based blind deconvolution,” J. VLSI Signal Processing, vol.
26, pp. 47–60, 2000.

[22] S. Amari and J. F. Cardoso, “Blind source separation—
semiparametric statistical approach,” IEEE Trans. Signal Process-
ing, vol. 45, no. 11, pp. 2692–2700, 1997.

[23] M. Joho and G. S. Moschytz, “Connecting partitioned frequency-
domain filters in parallel or in cascade,” IEEE Trans. Circuits Syst.–
II, vol. 47, no. 8, pp. 685–698, Aug. 2000.

[24] P. J. Davis, Circulant Matrices, John Wiley & Sons, 1979.

[25] R. M. Gray, Toeplitz and Circulant Matrices: A review, Stanford
Electron. Lab., Tech. Rep. 6502-1, June 1971.

[26] M. Joho, A Systematic Approach to Adaptive Algorithms for Multi-
channel System Identification, Inverse Modeling, and Blind Identi-
fication, Ph.D. thesis, ETH Z̈urich, Dec. 2000.

A Circulant matrices and basic properties

Since there is a very close relationship between products of cir-
culant matrices and circular convolutions, we recall some of the
basic properties of circulant matrices. For a thorough description
we refer to [24, 25] or [26, Chapter 3].

Let ã = (a1, . . . , aC)T . We define the corresponding circu-
lant matrix Ã which has ã as its first column as

Ã , C(ã) ,

a1 aC . . . a2

a2 a1

. . .
...

...
. . .

. . . aC

aC . . . a2 a1

. (53)

The inverse operation ã , C−1(Ã) returns the first column of Ã.
Furthermore, we define

ā , F ã (54)

Ā , F ÃF
−1 . (55)

Then (see [26])
Ā = diag(ā) (56)

FÃ
H

F
−1 = (FÃF

−1)H = Ā
H = Ā

∗ . (57)

With (56) we see that the similarity transform (54) always diago-
nalizes any circulant matrix and therefore the eigenvalue decom-
position (EVD) of a circulant matrix always has the form

Ã = F
−1

ĀF . (58)

