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Abstract

We consider a downlink DS-CDMA system in which multi-
rate user signals are transmitted via synchronous orthog-
onal short codes overlaid with a common scrambling se-
quence. The transmitted signal is subjected to significant
time- and frequency-selective multipath fading.

In response to this scenario, a novel two-step receiver
is proposed that combines chip-rate adaptive equalization
with error filtering. In the first step, a code-multiplexed
pilot is used to adapt the equalizer. The use of error filter-
ing implies a third-order LMS algorithm which has signif-
icant advantages over standard LMS in tracking the time-
varying channel. In the second step, decision-direction is
used to improve the error signal used in adaptation, result-
ing in improved tracking performance. The performance of
the adaptive receiver is studied through analysis and sim-
ulation.

1 Introduction
Data rates in the downlink of third generation mobile
phone services are expected to be greater than uplink rates
due to user-directed services such as internet browsing and
video streaming. The mobile terminals in these systems
must consume litter power. This motivates low-complexity
mobile receivers offering enhanced downlink performance.

In third generation mobile DS-CDMA systems, the
downlink multirate bit-streams are multiplexed using or-
thogonal short codes and then scrambled by a cell-specific
long code prior to synchronous transmission, as shown
in Fig. 1. The propagation channel is characterized by
time- and frequency-selective multipath fading. This de-
stroys the orthogonality among users which in turn sub-
stantially degrades the performance of the matched-filter
based detector. The usual methods of multipath mitiga-
tion in CDMA (e.g., the “blind minimum output energy”
techniques [1]) rely on received signal cyclostationarity. In
our case, however, the scrambling code destroys the cy-
clostationarity and so an alternative means of multipath

mitigation is required. We focus on adaptive chip-level
linear equalization as a means of restoring orthogonality
and hence reducing multi-access interference (MAI) in a
time- and frequency-selective fading environment. Sev-
eral linear and approximately minimum mean-squared er-
ror (MMSE) adaptive equalizers have been proposed (e.g.,
[2]–[8]), which update at the bit rate. In this paper we con-
sider novel adaptive equalizer structures thatupdate at the
chip rate in hope of better tracking the true time-variant
MMSE solution.

2 System model
Our received signal model is illustrated in Fig. 1 with the
following definitions. K denotes the number of users,
Nk the kth user’s spreading gain,bk(n) the kth user’s
bit stream,ck(i) the kth user’s short code, ands(i) the
scrambling sequence.{hi} denotes the chip-spaced chan-
nel impulse response (assumed time-invariant for simplic-
ity), Mh the channel length, andw(i) the additive noise.
Finally, t(i) denotes the transmitted sequence andr(i) the
received sequence.
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Figure 1:Synchronous Downlink Chip-Spaced Model

We make the following assumptions about the system:

A.1) Circular, i.i.d., zero-mean, PSK scrambling:

∀i, |s(i)| = 1; E{s(i)s∗(i+j)} = δj.

A.2) Multi-rate orthonormal Walsh codes:

∀k, ` s.t.N` ≥ Nk, m ∈ {0, . . . , N`

Nk
−1}, j :

δ`−k =

Nk−1
∑

i=0

c∗k(i)c`(i+mNk), |ck(j)| =
1√
Nk



A.3) Constant pilot at “user” indexk=0:

∀n, b0(n) = b0; c0(i) =

{

1√
N0

0 ≤ i ≤ N0 − 1

0 else

A.4) Circular, independent, zero-mean user bits (k > 0):

∀n, m, k 6= 0, E{bk(n)b∗` (n+m)} = Pkδmδ`−k

wherePk is the symbol power of thekth user.

A.5) Zero-mean, circular, white, Gaussian noisew(i) with
varianceσ2

w.

The transmitted signal can be written as

t(i) =

(

b0√
N0

+ u(i)

)

s(i) (1)

which from A.1)-A.4) is zero-mean uncorrelated with
power

σ2
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The chip-rate received signal is given by

r(i) = w(i) +

Mh−1
∑

`=0

h` t(i−`) (3)

3 Equalization
In the first subsection, we state the optimal linear MMSE
equalizer and SINR expression given the channel state in-
formation and additive noise power. In the second subsec-
tion, we derive a novel third-order LMS chip-rate adaptive
equalizer, and in the third subsection, we discuss a decision
directed equalization scheme.

3.1 Optimal MMSE solution

The MMSE chip equalizer that minimizes the cost

J
(ν)
t = E

∣

∣f
H

r(i+ν) − t(i)
∣

∣

2
(4)

is given by [9]

f
(ν)
t,∗ = σ2

t

(

σ2
t HH

H + σ2
wI

)−1
Heν (5)

wherer(i) = [r(i), r(i− 1), . . . , r(i−Mf + 1)]T ; f =

[f0, f1, . . . , fMf−1]
T ; eν =

[

0 . . . 0, 1, 0 . . .0
]T

, i.e., eν

is the unit vector with a one in theνth position,(ν ≥ 0);
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The signal to interference plus noise (SINR) expression for
the bit estimate of thèth user can be shown to be [9]

SINR̀ =
P`|qν |2

σ2
w‖f‖2 + σ2

t

∑

m 6=ν |qm|2 (6)

where{qi} is the channel/equalizer response defined by
qi =

∑

j fjh
∗
i−j . In (4) and (6), expectations are taken

over the user bits, the scrambling code, and the additive
noise. It is interesting to note that because of the random
scrambling code, (6) does not depend on the`th user’s
spreading factor.

If the total transmitted signalt(i) is available for train-
ing, we may use the standard LMS algorithm to adaptively
minimize (4) and track (5) in time-varying channel con-
ditions. In the CDMA systems under consideration, how-
ever, training comes in the form of a code-multiplexed pi-
lot signal. In other words, the transmitted signal consists
of a continuously-transmitted training signal superimposed
with unknown user signals. Due to A.3), a chip-rate er-
ror signal is readily constructed as the difference between
the descrambled equalizer output and a constant reference
value, say,γ

J (ν)
p = E

∣

∣s∗(i)fH
r(i+ν) − γ

∣

∣

2
(7)

which is minimized by [9]

f
(ν)
p,∗ = γ∗ b0√

N0

(

σ2
t HH

H + σ2
wI

)−1
Heν (8)

Hence choosing

γ =
σ2

t

b∗
0√
N0

(9)

setsf
(ν)
t,∗ = f

(ν)
p,∗ , i.e., proper choice ofγ implies that a

pilot-trained adaptive LMS equalizer will converge to the
MMSE equalizer given by (5).

For clarity of presentation, we have assumed a single-
channel system model. However, our analysis can be easily
extended to a multichannel system, as would result from
oversampling the received signal or adding additional re-
ceive antennas. In fact, the simulations in Section 4 corre-
spond to 1/2-chip-spaced sampling.



The pilot signal could also be used to form channel esti-
mates for use in rake combining. As we shall see, though,
the performance of such adaptive rakes are inferior to our
chip-level adaptive equalizer under low pilot-signal power
scenarios.

3.2 Third order LMS

In typical bit-rate equalizer update schemes, the equalized
signal is descrambled and then matched-filtered by the pi-
lot code to generate soft pilot-bit estimates. Soft errors
can then be calculated (once per bit) and used for equalizer
adaptation. When perfectly equalized, the recovered user
signals are orthogonal and hence the bit-rate equalizer up-
dates are free of MAI. Before equalizer convergence, how-
ever, the recovered users signals are not orthogonal, hence
the equalizer updates are corrupted by MAI.
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Figure 2:Chip-rate equalizer adaptation using output filtering.

Relative to bit-rate updating, chip-rate updating in-
creases the update rate but employs an error signal cor-
rupted by significantly higher levels of MAI. Nevertheless,
the error-signal MAI is zero-mean and can be attenuated
through lowpass filtering as shown in Fig. 2. Since lower-
ing the cutoff frequency reduces MAI but slows the reac-
tion to the error signal, the filter bandwidth should be op-
timized for a particular rate of channel variation and user
load. As we shall see, this optimization can be performed
on-the-fly. From Fig. 2, the instantaneous chip-rate error
signal can be written

Ĵav(i) = |zν(i) − γ|2 (10)

SupposeA(z) = ζ
1−G(z) whereζ is a constant, where

A(z) and G(z) have real valued coefficients, and where
G(z) is strictly causal. Definez(i) := zν(i) andy(i) :=
yν(i). Thenz(i) is obtained recursively such that

z(i) = ζy(i) +

Mg
∑

j=1

gjz(i−j)

= ζ

Mf−1
∑

m=0

f∗
m(i+ν)r(i−m+ν)s∗(i)

+

Mg
∑

j=1

gjz(i−j)

To derive the gradient, we realize that

∂Ĵav(i)

∂f∗
` (i+ν)

=
(

z(i) − γ
)∗ ∂z(i)

∂f∗
` (i+ν)

For convenience we define

α`(i) :=
∂z(i)

∂f∗
` (i+ν)

, 0 ≤ ` ≤ Mf−1

If we assume, due to smallµ, thatf∗
` (i+ν) ≈ f∗

` (i+ν−j),
for j ∈ {1, . . . , Mg} then

∂z(i−j)

∂f∗
` (i+ν)

≈ ∂z(i−j)

∂f∗
` (i−j+ν)

= α`(i − j)

and we obtain the recursion

α`(i) = ζr(i−`+ν)s∗(i) +

Mg
∑

j=1

gjα`(i−j) (11)

Note thatα`(i) is obtained by delaying the received signal
by `, then de-scrambling and filtering.

Definingα(i) = [α0(i), . . . , αMf−1(i)]
t, the equalizer

update is

f(i+1) = f(i)−µ · α(i−ν)
(

z(i−ν)−γ
)∗

(12)

whereα(i) is computed from (11). By using a single-pole
lowpass filter, i.e.,A(z) = 1−ρ

1−ρz−1 , the filter bandwidth
can be made readily adjustable, and the resulting algorithm
takes the form

α(i) = (1 − ρ)r(i)s∗(i − ν) + ρα(i − 1) (13)

e(i) = (1 − ρ)
(

f
H(i)r(i)s∗(i − ν) − γ

)

+ ρe(i − 1) (14)

f(i + 1) = f(i) − µα(i)e∗(i) (15)

As is evident from (13)-(15), the incorporation of
single-pole “matched filtering” is a form of filtered-
error/filtered-regressor LMS [10]. This particular algo-
rithm can be described as a third-order dynamical system,
which has known advantages over standard (first-order)
LMS in regards to tracking a Rayleigh-fading channel [11].
The tracking behavior of this algorithm is a function of two
adjustable parameters,µ andρ. Simulation studies under
various operating conditions suggest that fixingρ (within
a suitable range) and adjustingµ yields performance very
close to that obtained through joint optimization of both
parameters. (See Fig. 3). Automatic adjustment ofµ can be
accomplished using an adaptive step-size procedure (e.g.,
[12]), implying that this scheme should work well under a
wide range of mobility conditions.



−10 −8 −6 −4 −2 0 2 4
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

stepsize, log
2
(µ)

po
le

 lo
ca

tio
n,

 lo
g 2(1

−
ρ)

Average BER (log10)

−
0.

9

−
0.9

−
0.

9

−0.8

−0.8

−0.8

−0.8

−0.8

−0.8

−0.7

−0.7

−0.7

−0.7

−0.7

−0.7

−0.7

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6

−0.6
−0.5

−0.5

−0.5

−0.5

−0.5

−0.5

−0.5

−0.4

−0.4

−0.4

−0.4

−0.4

−0.4

Instability Region 

Poor Tracking Region 

Optimal
Region 

Figure 3:BER versus equalizer pole location and step-size.

3.3 Decision-directed adaptation

Assuming reasonable SNR levels, the pilot-based adapta-
tion scheme tracks the channel reasonably well and pro-
vides an output signal from which reliable bit decisions
can be obtained. Equalizer tracking could be significantly
improved, however, if we could somehow reduce the high
level of MAI in the output signal.

With this in mind, we propose a two-stage adaptation
scheme. The first stage uses the pilot-trained algorithm
from Section 3.2 and is intended for “cold startup” condi-
tions, i.e., when the channel is completely unknown. The
second stage uses tentative bit decisions (in addition to
the pilot) to adapt a delayed version of the equalizer, as
shown in Fig. 4. The tentative decisions are obtained by de-
spreading and detecting the output of the “current” equal-
izer f̂i, whose values can be predicted from the delayed
equalizerfi−N0

. Joint detection requires, in the worst case,
a delay ofN0 chips, whereN0 is the spreading gain of the
lowest-rate user. Arguing that, for typical mobile veloci-
ties, the equalizer taps experience relatively little change
over a span ofN0 chips, the prediction can be accom-
plished by simply copyingfi−N0

to f̂i. For best perfor-
mance, final bit decisions should be made from the delayed
outputx(i−N0).

It should be emphasized that our decision-directed (DD)
scheme is quite robust to tentative decision errors. In the
worst case—a tentative bit error rate of 50%—the MAI
power in the DD training signal ˆt(i−N0−ν) will be no
more than twice that in the pilot-only training signal (as-
suming BPSK and equal user powers for simplicity): in
the DD case, decision errors of magnitude 2 are made half
the time, while in the pilot case, errors of magnitude 1
are present all the time (since we ignore the user bits al-
together). Using the same reasoning, the DD algorithm

will have less MAI than the pilot-only algorithm when the
tentative BER is below 25%. This implies that BER=0.25
is an appropriate threshold for switching from pilot to DD.
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Figure 4:Decision-directed adaptive equalization.

4 Simulations
In all simulations we assume a 1/2-chip-spaced, 1/2-
loaded, synchronous DS-CDMA downlink consisting of
one user at each of the following spreading factors:
{4, 8, 16, 32, 64, 128, 256}. Users transmit unit power
BPSK, and pilot power is one percent of total transmitted
powerσ2

t . A Rayleigh-fading channel is used where the
chip-spaced rays have power profile{0,−3,−6,−9} dB
and total power equal to one. Velocity is 60 km/hr, chip-
ping rate is 3.84 Mcps, carrier frequency is 2 GHz, and
square-root raised-cosine chip pulsing shaping has excess
bandwidth 0.22. The performances in Figs. 5–6 are aver-
aged across users.

Figures 5 and 6 show that DD adaptation signifi-
cantly increases SINR and BER performance relative to
pilot-only adaptation and approaches the performance of
MMSE-optimal (non-adaptive) equalization. From Fig. 6
we note that the DD algorithm fails when SNR<0 dB. This
is consistent with the reasoning in Section 3.3 since, for the
first stage pilot-based algorithm, SNR<0 dB corresponds
to BER>0.25. Also shown in Figs. 5 & 6 are the perfor-
mances of the optimal MMSE equalizer and optimal rake
receiver. Unlike the adaptive algorithms we have derived,
these optimal receivers assume perfect knowledge of the
time-variant channel.

Figures 5 and 6 demonstrate that the pilot-based adap-
tive equalization scheme (13)-(15) outperforms the classi-
cal adaptive rake receiver in time- and frequency-selective
multipath fading. The adaptive rake receiver used a pilot-
based estimation of channel taps in which descrambled
outputs were filtered using single-pole filters whose pole
locations were BER-optimized through simulation.
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Figure 7:SINR trajectory from cold start to DD-tracking.

Figure 7 shows a prototypical SINR trajectory. From
cold start, the pilot-based algorithm first converges then
tracks the time-varying channel. After DD is incorporated,
the equalizer converges closer to the optimal solution and
then continues to track it.
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