
Compressive Phase Retrieval via

Bethe Free Energy Minimization

Phil Schniter

Collaborators: Sundeep Rangan (NYU)

Supported in part by NSF grants CCF-1018368 and CCF-1218754.

AMS Sectional Meeting (East Lansing, MI) — 3.14.15



Compressive Phase Retrieval. . . An Example

65536 image pixels, 32768 measurements, 30dB SNR:
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NMSE = -37.5 dB, runtime = 1.8 sec.
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Image Recovery

In image recovery, we want to

recover a image x ∈ C
N

from corrupted measurements y ∈ C
M

of hidden linear transform outputs z = Ax ∈ C
M .

The measurement corruption mechanism might be

additive noise: yi = zi + wi

phase-less: yi = |zi + wi|
one-bit: yi = sgn(zi + wi)
photon-limited (Poisson), etc...

The image is structured in that Ωx ∈ C
D is . . .

sparse (sufficiently few nonzeros)
co-sparse (sufficiently many zeros).

In this talk, we discuss only the case Ω = I for simplicity.
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Statistical Approach to Image Recovery

In the statistical approach to image recovery. . .

measurements modeled via likelihood p(y|x) =
∏M

i=1
py|z(yi|[Ax]i)

image modeled via prior distribution p(x) =
∏N

j=1
px(xj)

The posterior

p(x|y) =
p(y|x)p(x)

∫

CN p(y|x′)p(x′) dx′
,

tells all we can learn about x from y, but is expensive to compute.

Instead, one usually settles for point estimates like the

MAP estimate: x̂MAP = argmaxx p(x|y)

MMSE estimate: x̂j,MMSE = E{xj |y} =
∫

C
xj p(xj |y)dx ∀j

and perhaps marginal uncertainty information like var{xj |y}.
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Loopy Belief Propagation: Computing Posterior Marginals

Factor the posterior, exposing the statistical structure of the problem:

p(x|y) =
N+M
∏

α=1

fα(xα) ∝
M
∏

i=1

py|z(yi|[Ax]i)
N
∏

j=1

px(xj),

Visualize using the factor graph:

(White circles are random variables
and black boxes are factors.)
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Inference: Pass messages (pdfs) between nodes until they agree. The
sum-product algorithm approximates the marginal posteriors p(xj |y) by
locally minimizing the Bethe free energy:

J({qα}, {qβ}) =
∑N+M

α=1
DKL(qα‖fα) +M

∑N

β=1
h(qβ)

qα, qβ : cluster marginals s.t. qα(xβ) =
∫

qα(xα) dxα\β = qβ(xβ) ∀α, β ∈ Nα
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The Blessings of Dimensionality

For general prior/likelihood and A, loopy BP is not tractable.

But if A is i.i.d. sub-Gaussian then in the large-system limit . . .

messages can be approximated as Gaussian pdfs due to CLT,

differences between messages approximated via Taylor’s expansion,1

→ Approximate Message Passing (AMP) algorithm

per-iteration behavior characterized by a scalar state-evolution (SE),

if SE has unique fixed point, the marginal-pdf estimates are exact.2

1Donoho,Maleki,Montanari–PNAS’09
2Bayati,Montanari–IT’11
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The Generalized3 AMP Algorithm

for t = 1, 2, 3, . . .

1/σt= νxt ‖A‖2F /M stepsize adaptation
s̃t+1= G(st + σtAxn, σt) scalar denoising
νst+1= avg{σtG

′(st + σtAxn, σt)} local sensitivity

1/τt= νst+1‖A‖2F /N stepsize adaptation

x̃t+1= F
(

xt − τtA
Hs̃t+1, τt

)

scalar denoising

νxt+1= avg
{

τt F
′
(

xt − τtA
Hŝt+1, τt

)}

local sensitivity
[

xt+1

st+1

]

= βt

[

x̃t+1

s̃t+1

]

+ (1− βt)

[

xt

st

]

damping, βt ∈ (0, 1]

Looks just like a “primal-dual” algorithm, but . . .

prox operators are replaced by MMSE denoisers,
step-sizes σt and τt are adapted so that. . .
denoiser input is an AWGN-corrupted true x with error variance τt.

3Rangan—arXiv:1010:5141
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How fast is (G)AMP?

Pretty fast, at least for i.i.d. zero-mean Gaussian A:
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Above: LASSO recovery of a 40-sparse 1000-length Bernoulli-Gaussian
signal from 400 AWGN-corrupted measurements.
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What about generic matrices A?

Here is what we know about sum-product GAMP:

It may diverge! But...

Gaussian case: convergence is determined by the peak-to-average ratio
of the squared singular-values in A. For any A, possible to find fixed
damping coefficient βt = β that guarantees global convergence.4

General case: if it converges, then it converges to a local minimum of
the large-system-limit Bethe free energy (LSL-BFE):56

J(bx, bz) = DKL(bx‖px) +DKL(bz‖py|z) + h̄
(

var(x|bx), var(z|bz)
)

bx, bz : separable posteriors pdfs s.t. E{Ax|bx} = E{z|bz}

LSL-BFE-based damping works empirically, but not provably.

4Rangan,Schniter,Fletcher–arXiv:1402.3210
5Rangan,Schniter,Riegler,Fletcher,Cevher–arXiv:1301.6295
6Krzakala,Manoel,Tramel,Zdeborova–arXiv:1402.1384
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ADMM-GAMP: A Provably Convergent Alternative

Main idea: direct minimization of LSL-BFE:

argmin
separable pdfs bx,bz

DKL(bx‖px) +DKL(bz‖py|z) + h̄
(

var(x|bx), var(z|bz)
)

s.t. E{Ax|bx} = E{z|bz}
Challenge: h̄(var(b)) is neither convex nor concave in b , (bx, bz).

Solution: a double loop algorithm:7

Outer loop: linearize h̄ about current guess ❀ convex + concave

DKL(bx‖px) +DKL(bz‖py|z) +
1

2τ

T
var(x|bx) +

σ

2

T var(z|bz).

Inner loop: Minimize linearized LSL-BFE using ADMM under constraints

E(x|bx) = v, E(z|bz) = Av using penalty vectors 1

2τ
and σ

2
, respectively.

Result is basically GAMP plus one additional LS step for v.

Global linear convergence proven for strongly concave log px & log py|z.

7Rangan,Fletcher,Schniter,Kamilov–arXiv:1501.01797
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Tuning the Hyperparameters

The prior px often has tunable parameters (e.g., sparsity).
How to choose them?

The input to GAMP’s denoiser is an AWGN corrupted version of the truth
with known error variance. Thus,

1 learn prior via EM8 (deconvolution of blurred pdf), or
2 apply Stein’s Unbiased Risk Estimator.9

Can “learn prior” by tuning a high-order Gaussian-mixture model px.

The likelihood py|z also has tunable parameters (e.g., noise variance).
How to choose them?

Use the LSL-BFE as a negative-log-likelihood upper-bound. The AWGN
case admits simple closed-form tuning.10 For the non-AWGN case, we
proposed a Newton-based algorithm.11

8Vila,Schniter–SAHD’11 & TSP’13
9Mousavi,Maleki,Baraniuk–arXiv:1311.0035 / Guo,Davies–arXiv:1409.0440

10Krzakala,Mezard,Sausset,Sun,Zdeborova–JSM’12
11Schniter,Rangan–arXiv:1405.5618
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Application to Phase Retrieval

Need a likelihood function py|z(yi|zi) relating the noisy intensity
measurements yi to the noiseless transform outputs zi = [Ax]i.

1 Pre-intensity additive noise: yi = |zi + wi|.

If wi ∼ CN (0, νw), then likelihood is Rician:

py|z(ym|zm; νw) =
2ym
νw

exp
(

−
y2m + |zm|2

νw

)

I0

(2ym|zm|

νw

)

1ym≥0,

where I0(·) is the 0th-order modified Bessel function of the first kind.
LSL-BFE-based tuning of νw is detailed in paper.12

2 Post-intensity additive noise: yi = q(|zi|) + wi for some q(·).

Can handle this for generic q(·) and pw. See details in paper.12

3 Non-additive noise: e.g., Poisson model.

Can handle this as well since we allow generic py|z(ym|zm).

12Schniter,Rangan–arXiv:1405.5618
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Synthetic Experiments

For these numerical results we generated random. . .

signals x0 as K-sparse, N=512-length, Bernoulli-circular-Gaussian,

measurement matrices A as i.i.d circular Gaussian,

pre-intensity additive noise w as circular white Gaussian,

and we monitored the phase-corrected normalized MSE

NMSE , min
θ

‖x̂− eiθx0‖22
‖x0‖22

.
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Empirical Success Rate

Empirical rate of
success
, {NMSE < 10−6},
averaged over 100
realizations at SNR
= 100 dB:

 

 

2     4     8     16    32    64    128    256    512

16  

    

32  

    

64  

    

128 

    

256 

    

512 

    

1024

    

2048

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sparsity K

m
ea
su
re
m
en
ts

M

2K log2(N/K)

em
p
ir
ic
al

su
cc
es
s
ra
te

Note “non-compressive” phase retrieval means M & 4N = 2048.

Dashed curve shows M = 2K log2(N/K) for reference.
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Phase-retrieval GAMP vs. Phase-oracle GAMP

50%-success
contours averaged
over 100 realizations
at SNR = 100 dB:
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Phase-retrieval GAMP requires ≈ 4× the number of measurements as
phase-oracle GAMP. (Very interesting!)

Randomly restarting PR-GAMP doesn’t help much (for this family of A).
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Robustness to Noise

The median NMSE
for sparsity K = 4
over 200 realizations:
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PR-GAMP loses ≈ 3 dB to PO-GAMP at medium-to-high SNR.

(K,M) = (4, 64) is near the boundary of the phase transition.
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Accuracy of Noise-Variance Learning

The average
estimated noise
variance for sparsity
K = 4 at several M
over 10 realizations:
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The LSL-BFE-based likelihood-tuning method is accurate across a wide
SNR range.
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Accuracy of Sparsity-Rate Learning

The average
estimated sparsity for
M = 512 over 10
realizations:
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The EM-based prior-tuning method is accurate across a wide sparsity
range.
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Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:
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NMSE = -37.5 dB, runtime = 1.8 sec.
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Compressive Image Recovery: Details

Measurements operators used blurring and masking:

A =

[

B1

B2

] [

F

F

] [

D1

D2

]

Bi: banded blur operators, 10 i.i.d-Gaussian entries per column
F : 2D FFT
Di: masks with binary {0, 1} diagonal entries

Over 100 random measurement & noise realizations at SNR=30dB:

NMSE < −36 dB in 99 trials,
median runtime = 3.3 sec.
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PR-GAMP: Ongoing Work

PR-GAMP is a work-in-progress. Things we are working on include:

Derivation of the state evolution.

Incorporation of analysis-form priors (i.e., Ω 6= I).13

Incorporation of non-additive (e.g., Poisson) corruption models.14

MAP formulation of PR-GAMP.

13Borgerding,Schniter—arXiv:1312.3968
14Fletcher,Rangan,Varshney,Bhargava—NIPS’11
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Conclusions

(Compressive) phase retrieval is a longstanding problem that is
experiencing a rebirth through compressive sensing and convex
relaxation.

We proposed a new approach to CPR based on generalized approximate
message passing (GAMP), which minimizes the large-system limit Bethe
free energy.

Our approach can automatically learn the noise variance and signal
sparsity.

Empirical results show an excellent phase transition (4×measurements
of phase-oracle), excellent noise robustness (∼ 3 dB worse than
phase-oracle), and very fast runtimes.

As a practical demonstration, we accurately recovered a 64k-pixel image
from 32k noisy measurements in only 1.8 seconds.
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All of these methods are integrated into GAMPmatlab:
http://sourceforge.net/projects/gampmatlab/

Thanks!

Phil Schniter (Ohio State) Compressive Phase Retrieval via Bethe AMS — π day! 23 / 23

http://sourceforge.net/projects/gampmatlab/

