Multicarrier Pulse Design and Iterative Equalization for Doubly-Dispersive Channels

Phil Schniter

Oct. 3, 2003

CP-OFDM:

- Tx/Rx are extended DFT matrices \rightsquigarrow efficient implementation.
- Adequate guard \Rightarrow no ISI (i.e., $\mathcal{H}(i,j)|_{i\neq 0} = 0$).
- Zero Doppler \Rightarrow no ICI (i.e., $\mathcal{H}(i,0)$ diagonal).
- Doubly-dispersive challenges:

1 .

• Conclusion:

Inherent tradeoff between { ISI, ICI, Eff_{BW} }!

OQAM-OFDM:

- Offset-QAM used in conjunction with Tx/Rx filterbanks.
- Orthogonal/bi-orthogonal filterbanks...
 - maintain zero ISI/ICI for trivial channels
 - reduce ISI/ICI for non-trivial chans (relative to CP-OFDM).
- ISI/ICI suppression proportional to filterbank complexity.

Much more complex than PS-FDM!

Why worry about ISI/ICI? Two schools of thought: 1. ISI/ICI-suppressing modulation \rightarrow $\begin{cases} simple est/detect \\ low Eff_{BW} \\ may lose diversity \end{cases}$ 2. ISI/ICI-tolerating modulation \rightarrow $\begin{cases} high Eff_{BW} \\ complicated est/detect \\ can capture diversity \end{cases}$

Key Idea:

→ Design ICI/ISI pattern for simple estimation/detection.
→ ICI/ISI shaping rather than ICI/ISI suppression.
→ Leverage iterative equalization algs for banded systems.

Phil Schniter

Iterative Equalization:

- We decouple equalization from decoding (for simplicity).
- System model:

$$\boldsymbol{x}(i) = \boldsymbol{\mathcal{H}}(i,0)\boldsymbol{s}(i) + \boldsymbol{w}(i) + \boldsymbol{\varepsilon}(i),$$

where $\boldsymbol{\varepsilon}(i)$ represents ISI.

- With successful pulse designs...
 - ISI energy \ll noise energy, so $\pmb{\varepsilon}(i)$ can be ignored.
 - $\mathcal{H}(i,0)$ has "circular-banded" structure.

• Employ iterative equalization tailored to circular-banded system.

Simulation Setup:

channel	WSSUS Rayleigh
$f_{\sf d}$	chip-normalized Doppler
$N_h = 16$	delay spread [chips]
N = 64	BPSK syms per FDM symbol
$N_s = N$	FDM symbol interval [chips]
$N_a = \frac{3}{2}N_s$	Tx pulse duration [chips]
$N_b = N_a + \frac{N_h}{2}$	Rx pulse duration [chips]
$D = \lceil f_{\rm d} N \rceil + 1$	radius of neighboring-ICI
$5000 \cdot N$	BPSK syms per data point

SIE	soft cancellation of neighboring ICI
SDF	hard cancellation of neighboring ICI
AMFB	perfect cancellation of neighboring ICI
MFB	perfect cancellation of all ISI/ICI
SVD	pulses = singular vecs of channel conv mtx

Summary:

- Pulse-shaped FDM:
 - ICI/ISI-shaping for efficient equalization/detection.
 - max-SINR pulse design based on fading statistics & SNR.
 - Complexity on par with CP-OFDM.
- Iterative equalization algorithm for "circular-banded" system:
 - Soft cancellation of neighboring ICI.
 - MSE performance near MFB.
 - $\mathcal{O}(N)$ complexity.
- Together...
 - MSE performance near SVD-MFB.
 - BW efficient; capable of over-loaded operation.
 - Can add block-DFE for very long delay spreads (i.e., $N_h \ge N$).