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Abstract: With a fading channel, standard ML detection of Differential Unitary Space-Time

Modulation (DUST) leads to an error floor in the BER-versus-SNR curve since it is derived

under the assumption that the channel remains constant during every consecutive pair of matrix-

symbols. In this paper, we present decision-feedback differential detection (DFDD) of DUST,

which drastically reduces the error floor, especially in fast-fading channels. DFDD is derived

from multiple-symbol ML detection and is shown to be equivalent to Wiener channel prediction

followed by coherent ML detection. To derive the new detectors, we make the simplifying as-

sumption that the channel changes once per matrix-symbol (i.e., block fading) rather than once

per channel use (i.e., continuous fading). However, for the special case of diagonal space-time

constellations, the block-fading assumption is not required. Exact and Chernoff bound expres-

sions for pair-wise word-error probability (PWEP) are derived. An approximate expression

for BER is derived from the PWEP which is in close agreement with the simulation results.

The relationships between the performance and various system parameters, e.g., DFDD length,

normalized Doppler frequency are then explored via numerical examples and related to the

theoretical analysis.

1 Introduction

Differential Unitary Space-Time (DUST) modulation [1,2] is a multiple-antenna extension
of differential phase-shift keying (DPSK). In DUST, the information is encoded in the
phase difference between two consecutively transmitted M ×M unitary matrix-symbols,
where M is the number of transmit antennas. The standard single symbol ML detector,
which detects one information matrix-symbol from each pair of consecutively received
matrices, succumbs to an error floor in a fading channel [3–6]. For DPSK, multiple-symbol
detection [5] and prediction-based decision-feedback detection [6] have been proposed to
reduce, and asymptotically eliminate, the error floor in fading channels. Multiple-symbol
detection has also been proposed for DUST in fast Rayleigh fading [7].

In this paper, we present decision-feedback differential detectors (DFDD) for DUST
in fast Rayleigh-fading channels. In deriving the new detectors, we make the simplifying
assumption that the channel changes once per matrix-symbol (i.e., M channel uses)†

and that the receiver knows the fading correlation. Under these assumptions, a decision-
feedback detector is derived from the multiple-symbol ML detector [7] and shown to be

∗Direct all correspondence to: 205 Dreese Labs, 2015 Neil Avenue, Columbus, OH 43210. E-mail:
schniter@ee.eng.ohio-state.edu.

†It can be shown that the block-fading assumption is not necessary when diagonal DUST constella-
tions [1] are used [7].



equivalent to a Wiener-filter based channel predictor and detector. For performance anal-
ysis, exact and Chernoff bound expressions for pairwise word error probability (PWEP)
are derived. An approximate expression for BER is then derived from the PWEP which
is in close agreement with simulation results.

It may be worthwhile to mention a related work [8], wherein DFDD is proposed for
the specific case of diagonal constellations, as opposed to the general case of unitary
constellations [2,9] which is our focus. Since diagonal DUST with M transmit antennas
is equivalent to M decoupled single antenna DPSK systems, results for single antenna
DPSK are trivially extended to diagonal DUST. Also, unlike [8], we derive the exact
PWEP and hence obtain a better approximation of the BER.

The notations used in this paper are as follows: Matrices will be denoted by capital
letters (e.g., X and X) and column vectors by lower case bold (e.g., x). IP will denote
identity matrix of size P×P . The operator vec(·), e.g., xn = vec(Xn), denotes stacking of
the columns of matrix Xn in column vector xn. (·)∗ denotes conjugate transposition, ⊗ de-
notes the Kronecker product, tr(·) denotes the trace operator, det(·) the determinant, and
<(·) denotes the extraction of the real valued component.

∏ku

j=kl
Aj = Akl

Akl+1 · · ·Aku
if

ku ≥ kl, otherwise it denotes identity matrix of appropriate size, and Ĥn|
ku

kl
denotes an

estimate of Hn from the observations at time instant kl through ku.

2 System Model

We consider the system model

Xn =

√
ρ

M
SnHn + Wn (1)

where Xn is the M×P received matrix during the nth matrix-symbol interval, and where
M and P are the number of transmit and receive antennas, respectively. Hn is the M×P
MIMO channel response matrix during the nth matrix-symbol interval, containing i.i.d.
unit variance proper complex Gaussian entries. Sn is the nth M ×M transmitted matrix-
symbol, encoded as Sn = Vzn

Sn−1. zn ∈ L = {0, 1, . . . , 2ηM − 1} is the time-n integer
index into matrix alphabet A of size 2ηM , so that Vzn

∈ A. Thus η is the number of bits
per channel use. Sn and Vzn

are unitary for all n, Wn is a matrix of i.i.d. unit variance
proper complex Gaussian entries, and ρ is the average SNR per receive antenna.

Note that the system model (1) assumes that the channel Hn is fixed for M signaling
intervals within the nth matrix-symbol interval, i.e., the channel is block-fading. However,
for the special case of diagonal codes, (1) can be shown to be a valid system model even
in a continuously-fading channel such that the kth row of Hn is the kth row of Hk,n, where
Hk,n is the MIMO channel response matrix at the kth time instant within the nth matrix-
symbol interval, i.e., at the (nM + k)th channel use [7]. Note that, if the MIMO fading
process Hk,n is independent between antennas, then Hn is also independent between
antennas, and that (1) is an approximate model when non-diagonal constellations are
used in continuous fading.

3 Decision-Feedback Differential Detection

3.1 DFDD from Multi-symbol ML Detection

Multiple symbol differential detection of DPSK and DUST has been proposed as an
effective way to enhance performance in correlated Rayleigh fading [5, 7, 8]. The joint



ML detector of {zk}
n
k=n−m+1 given the observation sequence {Xk}

n
k=n−m is [7]

{ẑk}
n
k=n−m+1 = arg max

zn,zn−1,...∈L
<

[

tr

{
m−1∑

k=0

m−k−1∑

i=0

a(m)

i,i+k+1X
∗
n−i

(
i+k∏

j=i

Vzn−j

)

Xn−i−k−1

}]

(2)

where the combining coefficients {a(m)

i,j } are given by [7]
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(3)

where ζk is defined such that E[hnh
∗
n−k] = ζkIMP for hk = vec(Hk). Note that ζ0 = 1

since Hk contains unit-variance entries.
The DFDD can be derived from the m-symbol ML detector (2) by feeding back the

past decisions, i.e., replacing the hypotheses {zk}
n−1
k=n−m+1 by the previously detected

symbols {ẑk}
n−1
k=n−m+1 in the nth symbol interval and maximizing the term on the right of

(2) with respect to zn alone. Of course, terms on the right of (2) that are not functions
of zn can be ignored. We denote the DFDD derived from the m-symbol ML detector as
the m-DFDD, given by

ẑn = arg max
zn∈L

<

[

tr

{
m−1∑

k=0

a(m)

0,k+1X
∗
n

(

Vzn

k∏

j=1

Vẑn−j

)

Xn−k−1

}]

(4)

which is a generalization of the DFDD rules for DPSK [6] and diagonal constellations [8]
to the general class of unitary constellations. It is not hard to show that when ζ1 = 1,
1-DFDD reduces to the “standard single symbol ML detector” (eq. (21) of [1]).

3.2 DFDD from MMSE channel prediction

Under the assumption of correct past decisions, i.e., ẑk = zk, k = n − m + 1, . . . , n − 1,
we now derive a DFDD based on MMSE channel prediction. Although our derivations
assume correct past decisions, the DFDD can be implemented in practice using symbol
estimates.

In the symbol interval n we observe Xn for detection of Vzn
, and the observations

{Xk}
n−1
k=n−m are collected for estimation of Hn. For estimation of Hn we assume, for the

moment, that {Sk}
n−1
k=n−m is known (without error) at the receiver. We will see, however,

that the resulting detector will depend on {Vzk
}n

k=n−m+1 rather than {Sk}
n−1
k=n−m. Since

Xk =
√

ρ
M

SkHk + Wk, k = n−m, . . . , n− 1, denoting hk = vec(Hk), xk = vec(Xk), and
wk = vec(Wk), we can write
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Assume that the MMSE estimate of hn, ĥn = vec(Ĥn|
n−1
n−m), is given by

ĥn =

m∑

k=1

B∗
kxn−k = B∗xn−1 (6)

where B = [B∗
1 B∗

2 . . . ; B∗
m]∗. It can be shown straightforwardly that the mean square

error J(B) = E[‖ĥn − hn‖2] is minimized by selecting

B =

√
ρ

M
Sn−1

(

(T (m−1)−1
g) ⊗ IMP

)

(7)

where g = [ζ1 ζ2 . . . ζm]∗, T (m) = Im+1 + ρ
M

Ξ(m), and Ξ(m) is defined in (3). It can

be shown that the minimum mean-square error Jmin is given by Jmin = MP
(

1 − σ2
Ĥ

)

,

where σ2
Ĥ

= ρ
M

g∗T (m−1)−1
g. The choice of the notation “σ2

Ĥ
” will be made clear later. It

can be shown that (for details, see [10])

√
ρ

M
(T (m−1)−1

g) ⊗ IMP = ξ






a(m)

0,1
∗
IMP
...

a(m)

0,m
∗
IMP




 (8)

where ξ =
√

M
ρ

+
√

ρ
M

(1 − σ2
Ĥ

) > 0. Therefore, the channel estimate ĥn is given by

ĥn = ξ

m−1∑

k=0

a(m)

0,k+1

(
IP ⊗ S∗

n−k−1

)
xn−k−1 (9)

Defining the estimation error h̃n = hn − ĥn, the system model (1) can be rewritten as

xn =

√
ρ

M
(IP ⊗ Vzn

) (IP ⊗ Sn−1) ĥn +

√
ρ

M
(IP ⊗ Sn) h̃n + wn

︸ ︷︷ ︸

w̃n

(10)

It is not hard to show that E[ĥnĥ
∗
n] = σ2

Ĥ
IMP and E[ĥnh̃

∗
n] = 0, which implies E[ĥnw̃

∗
n] =

0. It can also be shown that E[w̃nw̃
∗
n] = σ2

W̃
IMP , where σ2

W̃
= 1 + ρ

M
(1 − σ2

Ĥ
).

It is important to note that computation of the estimate ĥn requires the knowledge
of the symbols {Sk}

n−1
k=n−m which are unknown to the receiver, whereas (IP ⊗ Sn−1) ĥn

depends only on the previously detected (error-free) symbols {Vzk
}n−1

k=n−m+1. Moreover,

since the entries of h̃n are zero-mean i.i.d. Gaussian variables, multiplication by the
unitary matrix does not change its distribution. Therefore, from (10), the ML detector
of Vzn

for known (IP ⊗ Sn−1) ĥn is

ẑn = arg max
zn∈L

<
[

x∗
n (IP ⊗ Vzn

) (IP ⊗ Sn−1) ĥn

]

= arg max
zn∈L

<

[

tr

{

ξ

m−1∑

k=0

a(m)

0,k+1X
∗
n

(

Vzn

k∏

j=1

Vzn−j

)

Xn−k−1

}]

(11)

which is identical to (4) under perfect past decisions since ξ > 0. Since perfect past
decisions are not available in practice, (11) would be implemented using {ẑk}

n−1
k=n−m+1 in

place of {zk}
n−1
k=n−m+1, making it identical to (4).



Comment 3.1 : Though our derivations of DFDD for non-diagonal constellations as-
sume block-fading channels, simulation results in Section 5 confirm that the m-DFDD
for m > 1 derived in this paper significantly outperforms the standard single sym-
bol detector under fast continuous-fading as well. Note that the coefficients {a(m)

i,j }
used in the continuous-fading case would be recomputed with ζk defined such that
E[h0,nh

∗
0,n−k] = ζkIMP for h0,n = vec(H0,n).

Comment 3.2 : The m-symbol ML detection rule (2) can be re-written as

{ẑk}
n
k=n−m+1 = arg max

zn,zn−1,...∈L
<

[

tr

{
m−1∑

k=0

X∗
n−kVzn−k

Sn−k−1(Ĥn−k|
n−k−1
n−m )

}]

(12)

Ĥn−k|
n−k−1
n−m =

n−k−1∑

`=n−m

a(m)

k,n−`S
∗
` X` (13)

It is easy to show that the m-symbol ML detection rule for detecting {zk}n
k=n−m+1 from

{Xk}n
k=n−m+1 for known Sn−k−1Hn−k can be written as (12) but with the replacement

Ĥn−k|
n−k−1
n−m = Hn−k. In fact, if Sn−k−1Ĥn−k|

n−k−1
n−m are any channel estimates such that

the sum of the channel estimation error and the additive noise is white, then (12) is still
the m-symbol ML detector. Thus we see that the multi-symbol ML detection rule has
an estimator/detector structure, where the channel estimation is performed using (13).

4 Error Performance

In this section we first derive the exact PWEP and Chernoff upper bound expressions
for genie-aided (i.e., perfect past decisions) DFDD, and later use them to approximate
the BER.

4.1 Exact PWEP

Defining h̆n = 1
σ

Ĥ

(IP ⊗ Sn−1)ĥn, w̆n = w̃n/σW̃ , and x̆n = xn/σW̃ we can rewrite (10) as

x̆n =

√

ρ̆

M
(IP ⊗ Vzn

) h̆n + w̆n (14)

where ρ̆ =
ρσ2

Ĥ

σ2
W̃

is the “equivalent SNR”. Note that h̆n, w̆n ∼ CN (0, IMP ) and E[h̆nw̆
∗
n] =

0.
Given that the symbol V1 was sent, the receiver will detect V2, and thus make a

decision error, if

‖x̆n −

√

ρ̆

M
(IP ⊗ V2) h̆n‖

2 < ‖x̆n −

√

ρ̆

M
(IP ⊗ V1) h̆n‖

2

⇐⇒ Q = [y∗
1 y∗

2]

[
IMP

0

0

−IMP

]

︸ ︷︷ ︸

K

[
y1

y2

]

︸ ︷︷ ︸

y

< 0 (15)

where y1 =
√

ρ̆
M

(IP ⊗ (V1 − V2)) h̆n + w̆n and y2 = w̆n, and the PWEP is given by

Pr(V1 → V2) = Pr(Q ≤ 0) =
∑

poles ω=jp
p>0

Res

[

−
ΦQ(ω)

ω

]

(16)



where the summation is taken over the poles in the upper half plane (UHP) and ΦQ(ω) =
E[ejωQ]. The characteristic function of Q, a Hermitian quadratic of Gaussian vector, is
given by [11]

ΦQ(ω) =
1

det(I2MP − jωRyK)
(17)

where Ry = E[yy∗], given as

Ry =

[
ρ̆
M

(IP ⊗ (V1 − V2)(V1 − V2)
∗) + IMP

IMP

IMP

IMP

]

(18)

Using det [ A C
B D ] = det(A − BD−1C)det(D), it can be shown that [12]

det(I2MP − jωRyK) =

M∏

k=1

(
ρ̆

M
σ2

k

)P

(ω − jp+
k )P (ω − jp−k )P (19)

where σk is the kth singular value of V1 − V2 and

p±k =
1

2

(

1 ±

√

1 +
4M

ρ̆σ2
k

)

Note that the characteristic function ΦQ(ω), and hence the PWEP, depend on the signal
only through the singular values of V1 − V2. Since the singular values of V1 − V2 and
IM − V2V

∗
1 are the same, Pr(V1 → V2) = Pr(IM → V2V

∗
1 ).

Computation of the PWEP using (16) involves taking residues at poles with mul-
tiplicities greater than 1, which can be complicated. A simple method to evaluate the
PWEP in such cases has been proposed in [12], where the poles are perturbed by small
amount to eliminate multiplicity, and the PWEP is computed by taking residues at all

the simple poles in UHP. This method produces an lower bound on the PWEP if all the
concerned poles are moved away from origin, and upper bound when towards the origin.
In this paper, the ith occurrence of p+

k is replaced by ˜̃p+
(k−1)Pmk+i = p+

k +(i−1)εk, yielding

the set of simple poles { ˜̃pk}MP
k=1, and hence, the PWEP from (16)

Pr(L)/(U)(V1 → V2) ≷

MP∑

k=1

1
˜̃p+
k

(
M∏

`=1

M

ρ̆σ2
` (

˜̃p+
k − p−k )

)P MP∏

`=1,` 6=k

1

(˜̃p+
` − ˜̃p+

k )
(20)

where an upper bound is obtained by choosing εk = −0.0025p̃+
k , and a lower bound by

choosing εk = 0.0025p̃+
k . Numerical results in Section 5 confirm that these bounds are

very close to each other, and thus this method produces an accurate estimate of the
PWEP.

4.2 Chernoff Bound on the PWEP

To obtain a better intuitive insight into the performance of DFDD, we now analyze the
Chernoff upper bound on PWEP. Since (14) describes a known-channel system with
equivalent SNR ρ̆, the Chernoff bound on the PWEP is given by [1]

PrChernoff(V1 → V2) ≤
1

2

M∏

k=1

[

1 +
ρ̆

4M
σ2

k

]−P

(21)



Observe that the diversity advantage of the system is MP , whereas the performance is
governed by the equivalent SNR ρ̆. Recall that ρ̆ is a function of ρ, the SNR when the
channel is known perfectly (henceforth termed “coherent SNR”), the length m of DFDD,
and the fading correlations ζk.
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Figure 1: Equivalent SNR ρ̆ vs coherent SNR
ρ for (a) fDTs = 0.1, (b) m = 3.

E
q
u
iv

a
le

n
t

S
N

R
ρ̆

[d
B
]

E
q
u
iv

a
le

n
t

S
N

R
ρ̆

[d
B
]

DFDD length m fDTs

ρ = 15dBρ = 15dB

fDTs = 0.0025

m = 5

m = 10

fDTs = 0

fDTs = 0.1

fDTs = 0.075

fDTs = 0.05

m = 3

m = 2

m = 1

(a) (b)

0
0

0
0 20 40 60 80 100

22

44

66

88

1010

1212

1414

1616

0.02 0.04 0.06 0.08 0.1

Figure 2: Equivalent SNR ρ̆ vs (a) DFDD
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For numerical examples in this paper, we consider a system with M = 2 trans-
mit and P = 2 receive antennas. The MIMO channel exhibits Rayleigh fading [13]
where the correlation between fading coefficients k matrix-symbols apart is given by
ζk = J0(2πfDTsMk) and where fDTs is the normalized Doppler frequency. Observe that
fDTsM is the effective normalized Doppler frequency for M×M symbols. As we will see,
the performance of the detectors degrades with increasing Doppler frequency, therefore,
increasing M in a fading channel may degrade the performance.

Figure 1 demonstrates the variation of the equivalent SNR ρ̆ w.r.t. the coherent SNR
ρ for different fDTs and DFDD feedback lengths m. Observe that when either fDTs

is large or m is small, ρ̆ reaches a ceiling, implying that an error floor will appear in
the BER vs. SNR ρ curve. Fig. 1(a) indicates that increasing m has less pronounced
effect on the performance when ρ in small, whereas the performance improvement can be
significant when ρ is high. Equation (21) and Fig. 1(b) imply that the slope of the BER
vs coherent SNR ρ curve would decrease with increasing fDTs, which is in accordance
with the result for DPSK reported in [6].

Figure 2 examines variations in ρ̆ versus m and fDTs for ρ = 15dB. Fig. 2 indicates
that increasing m beyond, say, m = 10 has an insignificant effect on performance. Note
also that when fDTs = 0, coherent detection performance is achieved asymptotically by
DFDD. Performance loss due to increased channel variation is depicted in Fig. 2(b).

4.3 Approximate Bit Error Rate

In practice, bit error probability (BER) is a more useful metric than PWEP. Since
Pr(V1 → V2) = Pr(IM → V2V

∗
1 ), and V1, V2 ∈ A =⇒ V2V

∗
1 ∈ A, and since ηM bits are

encoded in each transmitted matrix-symbol, under the assumption of Gray mapping and
equal prior probabilities the BER can be written as

P
Chernoff/(L)/(U)
genie ≈

1

ηM

2ηM−1∑

j=1

d(IM , Vj)PrChernoff/(L)/(U)(IM → Vj) (22)



where d(Vj, Vk) is the Hamming distance between the binary representations of Vj and
Vk, and PrChernoff/(L)/(U) from (20) & (21) are used.

For realizable m-DFDD, the influence of incorrect past-decisions has to be taken into
account for m > 1. In [14] it has been shown that the BER of realizable DFDD is
approximately twice that of genie-aided DFDD for DPSK, since every error is likely to
cause another error due to error propagation. Through numerical evaluation we find that
this approximation extends to DUST as well, which is in accordance with [8].

5 Simulations & Numerical Results

We evaluate the performance of the detectors with two channel types: “block fading” and
“continuous fading”. In continuous fading the correlation between coefficients k symbols
apart is given by J0(2πfDTsk) [13], while, in block-fading, the correlation between channel
coefficients m matrix-symbols apart is given by J0(2πfDTsMm).

Since the use of diagonal constellations in continuous fading yields the same model
as general constellations in block fading [7], detector performance is identical in these
two cases. Therefore, we focus on detector performance using diagonal and non-diagonal
constellations in continuous fading. We consider a system with two receive antennas and
use the constellations specified in [1] with two transmit antennas and η = 1.
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Figure 3: m-DFDD detection of diagonal
constellation in continuous fading with (a)
fDTs = 0.1, (b) fDTs = 0.05
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with (a) fDTs = 0.075, (b) fDTs = 0.05

The simulated BER of genie-aided as well as realizable 1-, 2-, and 6-DFDD in con-
tinuous fading with fDTs = 0.1 and 0.05 is shown in Fig. 3, where the advantage of
m-DFDD, m > 1 over standard single symbol detection is clearly illustrated. When
fDTs = 0.1, 1-DFDD, which is equivalent to standard single symbol detection, succumbs
to very high error floor, whereas the performance is dramatically improved when 6-DFDD
is employed, as predicted by Fig. 1(a). Meanwhile, 2-DFDD performs much better than
1-DFDD while still succumbing to an error floor. Similar, though less pronounced, trends
can be seen in Fig. 3(b), where fDTs = 0.05. Figure 3 also demonstrates the effect of
error propagation via comparison of genie-aided and realizable DFDD.

Next, the performance of the detectors has been evaluated in continuous fading with
a non-diagonal constellation to illustrate the performance loss due to approximation in
system model (1). The non-diagonal constellation is generated by right multiplying the
diagonal constellation by a fixed non-diagonal unitary matrix. Because such an operation



does not change the product distance of the constellation [1], the comparison is fair.
Figure 4 illustrates the performance of 1-,2-, and 6-DFDD using the non-diagonal

constellation in continuous fading with fDTs = 0.075 and fDTs = 0.05. Although a
performance loss is incurred due to neglecting the channel variation within the matrix-
symbol interval, in both cases 2- and 6-DFDD perform much better than single symbol
detection. Unlike diagonal constellation case, Fig. 4 shows that 6-DFDD provides signifi-
cant performance gain over 2-DFDD when fDTs = 0.05, whereas the gain is insignificant
for higher fDTs.

Now we compare theoretical with simulated BER to verify the validity of the error
analysis in Section 4. Since BER and PWEP expressions have been derived for genie-
aided DFDD, and since the approximate BER of realizable DFDD can be obtained by
multiplying the genie-aided BER by 2 [8,14], we present simulation and theoretical results
for only the genie-aided case.
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Figure 5: Theoretical and simulated BER of genie-aided m-DFDD: Diagonal constellation in
continuous fading with fDTs = 0.075

Figure 5 compares the theoretical and simulated BER of 2- and 6-DFDD using a
diagonal constellation in continuous fading with fDTs = 0.075. Three approximations to
the BER, PChernoff

genie , P
(L)
genie, and P

(U)
genie from (22) are presented. Observe that P

(L)
genie and

P
(U)
genie are somewhat loose at high BER since (22) employs the union bound, whereas at

lower BER these approximations closely matches the simulated BER. Since P
(L)
genie and

P
(U)
genie are very close to each other, in practice either one of them can be used for error

analysis.

6 Conclusions

In this paper, we have demonstrated, via simulation as well as theoretical error perfor-
mance analysis, the efficacy of decision-feedback differential detection for DUST modula-
tion in fast-fading channels. Although the DFDDs assume the channel to be block-fading
when non-diagonal constellations are used, they have been shown to improve the per-
formance in continuous fading as well. The m-DFDD performance has been shown to
degrade with increasing Doppler frequency, and improve with increasing m.
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