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Abstract: The Shalvi-Weinstein (SW) criterion has become popular in the design of blind

linear estimators of i.i.d. processes transmitted through unknown linear channels in the presence

of unknown additive interference. Here we analyze SW estimators in a general multiple-input

multiple-output (MIMO) setting that allows near-arbitrary source/interference distributions

and non-invertible channels. The main contributions of this paper are (i) a simple test for the

existence of a SW estimator for the desired source and (ii) bounding expressions for the MSE

of SW estimators that are a function of the minimum attainable MSE and the kurtoses of the

source and interferers.

1 Introduction

Consider the linear estimation problem of Fig. 1, where a desired source sequence {s(0)
n }

combines linearly with K interfering sources {s(k)
n } through vector channels {h(0)(z), . . . ,

h(K)(z)}. Our goal is to estimate the desired source using the (vector) linear estimator
f(z). The linear estimates {yn} which minimize the mean-squared error (MSE)

Jm,ν(yn) := E
{

|yn − s(0)

n−ν |2
}

(1)

are generated by the minimum MSE (MMSE) estimator, or Wiener estimator, fm,ν(z).
Specification of fm,ν(z), however, requires knowledge of the joint statistics of the observed
sequence {rn} and the desired source sequence {s(0)

n }, which are typically unavailable
when the channel is unknown.

When only the statistics of the observed sequence {rn} are known, it may still be
possible to estimate {s(0)

n } up to unknown magnitude and delay, i.e., yn =
∑

i f
H
i rn−i ≈

αs(0)

n−ν for some α ∈ C, some ν ∈ Z, and all n. The literature refers to this problem as
blind estimation (or blind deconvolution).

In [1], Shalvi and Weinstein showed that, for i.i.d. sources, noiseless invertible chan-
nels, and adequately parameterized estimators, perfect blind estimation is possible with
knowledge of only the second- and fourth-order moments of the estimates {yn}. Based
on this observation, they proposed a blind estimation scheme that manipulates f(z) to
maximize the absolute kurtosis of the estimates {yn} subject to a variance constraint:

max
∣

∣K(yn)
∣

∣ s.t. σ2
y = 1, (2)

where, for zero-mean {yn}, we define variance as σ2
y := E{|yn|2} and kurtosis as

K(yn) := E{|yn|4} − 2 E2{|yn|2} −
∣

∣E{y2
n}

∣

∣

2
. (3)



As proven in [1], unconstrained linear estimators locally maximizing the Shalvi-
Weinstein (SW) criterion yield perfect blind estimates of a single non-Gaussian i.i.d.
source transmitted through a noiseless invertible linear channel. In practical situations,
however, we expect inadequately parameterized estimators, non-invertible channels, as
well as noise and/or interference of a potentially non-Gaussian nature. Are SW estima-
tors useful in these cases? How do SW estimates compare to optimal (linear) estimators,
say, in a mean-squared sense?

In this paper we study the performance of constrained ARMA SW estimators under
the assumptions of the model in Section 2.1: desired source with arbitrary non-Gaussian
distribution, interference with arbitrary distribution, and vector ARMA channels. The
main contributions of this paper are (i) a simple test for the existence of a SW estimator
for the desired source, and (ii) bounding expressions for the MSE of SW estimators that
are a function of the minimum MSE attainable under the same conditions. These bounds,
derived under the multi-source linear model of Fig. 1, provide a formal link between the
SW and Wiener estimators in a very general context.
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Figure 1: Linear system model with K sources of interference.

2 Background

In this section, we give more detailed information on the linear system model and the
MSE, unbiased MSE, and SW criteria. The following notation is used throughout: (·)t

denotes transpose, (·)∗ conjugate, (·)H hermitian, and (·)† Moore-Penrose pseudo-inverse.
Likewise, E{·} denotes expectation, ‖x‖p the p-norm defined by p

√
∑

i |xi|p, I the identity
matrix.

2.1 Linear System Model

First we formalize the linear time-invariant multi-channel model illustrated in Fig. 1. Say
that the desired symbol sequence {s(0)

n } and K sources of interference {s(1)
n }, . . . , {s(K)

n }
each pass through separate linear “channels” before being observed at the receiver. The
interference processes may correspond, e.g., to interference signals or additive noise pro-
cesses. In addition, say that the receiver uses a sequence of P -dimensional vector ob-
servations {rn} to estimate (a possibly delayed version of) the desired source sequence,
where the case P > 1 corresponds to a receiver that employs multiple sensors and/or
samples at an integer multiple of the symbol rate. The observations rn can be writ-
ten rn =

∑K
k=0

∑∞
i=0 h

(k)

i s(k)

n−i, where {h(k)
n } denote the impulse response coefficients of

the linear time-invariant (LTI) channel h(k)(z). We assume that h(k)(z) is causal and
bounded-input bounded-output (BIBO) stable. Note that such h(k)(z) admit infinite
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impulse response (IIR) channel models.
From the vector-valued observation sequence {rn}, the receiver generates a sequence

of linear estimates {yn} of {s(0)

n−ν}, where ν is a fixed integer. Using {fn} to denote
the impulse response of the linear estimator f(z), the estimates are formed as yn =
∑∞

i=−∞ fH
i rn−i. We will assume that the linear system f(z) is BIBO stable with con-

strained ARMA structure, i.e., certain polynomial coefficients in the numerator and
denominator of f(z) may be held at zero.

In the sequel, we will focus almost exclusively on the global channel-plus-estimator re-
sponse q(k)(z) := fH(z)h(k)(z). The impulse response coefficients of q(k)(z) can be written
q(k)
n =

∑∞
i=−∞ fH

i h
(k)

n−i, allowing the estimates to be written as yn =
∑K

k=0

∑∞
i=−∞ q(k)

i s(k)

n−i.
Adopting the following vector notation helps to streamline the remainder of the paper.

q
(k) := (. . . , q(k)

−1, q
(k)

0 , q(k)

1 , . . . )t,

q := (· · · , q(0)

−1, q
(1)

−1, . . . , q
(K)

−1 , q(0)

0 , q(1)

0 , . . . , q(K)

0 , q(0)

1 , q(1)

1 , . . . , q(K)

1 , · · · )t,

s
(k)(n) := (. . . , s(k)

n+1, s
(k)

n , s(k)

n−1, . . . )
t,

s(n) := (· · · , s(0)

n+1, s
(1)

n+1, . . . , s
(K)

n+1, s(0)

n , s(1)

n , . . . , s(K)

n , s(0)

n−1, s
(1)

n−1, . . . , s
(K)

n−1, · · · )t.

For instance, the estimates can be rewritten concisely as yn =
∑K

k=0 q
(k)t

s
(k)(n) = q

t
s(n).

The source-specific unit vector e(k)
ν will also prove convenient. e(k)

ν is a column vector with
a single nonzero element of value 1 located such that q

te(k)
ν = q(k)

ν .
We now point out two important properties of q. First, it is important to recognize

that a particular channel and set of estimator constraints will restrict the set of attainable
global responses, which we will denote by Qa. For example, when the estimator is FIR,
q ∈ Qa = row(H), where

H :=









h
(0)

0 · · · h(K)

0 h
(0)

1 · · · h(K)

1 h
(0)

2 · · · h(K)

2 · · ·
0 · · · 0 h

(0)

0 · · · h(K)

0 h
(0)

1 · · · h(K)

1 · · ·
...

...
...

...
...

...
0 · · · 0 0 · · · 0 h

(0)

0 · · · h(K)

0 · · ·









. (4)

Restricting the estimator to be sparse or autoregressive, for example, would generate
different attainable sets Qa. Next, BIBO stable f(z) and h(k)(z) imply BIBO stable
q(k)(z), so that ‖q(k)‖p exists for all p ≥ 1, and thus ‖q‖p does as well.

Throughout the paper, we make the following assumptions on the K + 1 source
processes:

S1) For all k, {s(k)
n } is zero-mean i.i.d.

S2) {s(0)
n }, . . . , {s(K)

n } are jointly statistically independent.

S3) For all k, E{|s(k)
n |2} = σ2

s .

S4) K(s(0)
n ) 6= 0.

S5) If, for any k, q(k)(z) or {s(k)
n } is not real-valued, then E{s(k)

n
2} = 0 for all k.

2.2 The Unbiased Mean-Squared Error Criterion

The well-known mean-squared error (MSE) criterion was defined in (1) in terms of the
estimate yn and the estimand s(0)

n−ν . Using S1)–S3), we may rewrite (1) in terms of the
global response q as follows: Jm,ν(q) = ‖q − e(0)

ν ‖2
2 σ2

s . Denoting MMSE quantities by
the subscript “m,” it can be shown that in the FIR case S1)–S3) imply that the MMSE
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channel-plus-estimator is given by qm,ν = H
t(H∗

H
t)†H∗e(0)

ν . A similar expression can
be derived for the IIR case (see [2]).

Since both symbol power and channel gain are unknown in the “blind” scenario, blind
estimators suffer from a gain ambiguity. To ensure that our estimator performance eval-
uation is meaningful in the face of such ambiguity, we base our evaluation on normalized
versions of the blind estimators and normalize by the receiver gain q(0)

ν . Given that the es-
timate yn can be decomposed into signal and interference terms as yn = q(0)

ν s(0)

n−ν + q̄
t
s̄(n),

where q̄ denotes q with the q(0)
ν term removed and s̄(n) denotes s(n) with the s(0)

n−ν term
removed, the normalized estimate yn/q

(0)
ν can be referred to as “conditionally unbiased”

since E{yn/q(0)
ν |s(0)

n−ν} = s(0)

n−ν .
The (conditionally) unbiased MSE (UMSE) associated with yn, an estimate of s(0)

n−ν ,
is then defined

Ju,ν(yn) := E
{

|yn/q
(0)

ν − s(0)

n−ν |2
}

. (5)

Substituting the decomposition of yn into (5), and using S1)–S3),

Ju,ν(q) =
E
{

|q̄t
s̄(n)|2

}

|q(0)
ν |2 =

‖q̄‖2
2

|q(0)
ν |2 σ2

s . (6)

3 SW Performance

In this section we derive bounds for the UMSE of SW symbol estimators. Section 3.1
outlines our approach, Section 3.2 presents the main results, and Section 3.3 comments
on these results. Proofs are not included due to lack of space, but can be found in [2].

3.1 The SW-UMSE Bounding Strategy

Since yn = q
t
s(n) for q ∈ Qa, source assumptions S1)-S5) imply that [3]

K(yn) =
∑

k

‖q(k)‖4
4 K(k)

s , σ2
y = ‖q(k)‖2

2σ
2
s , (7)

using the shorthand K(k)

s = K(s(k)
n ). This allows a rewrite of the SW criterion (2):

max
q∈Qa∩Qs

∣

∣

∣

∑

k

‖q(k)‖4
4 K(k)

s

∣

∣

∣

where Qs denotes the set of unit-norm global responses: Qs := {q s.t. ‖q‖2 = 1}.
Though the SW criterion admits multiple solutions, we are only interested in those

that correspond to the estimation of the 0th user’s symbols at delay ν. We define the set
of global responses associated1 with the {user, delay} pair {0, ν} as follows:

Q(0)

ν :=
{

q s.t. |q(0)

ν | > max
(k,δ)6=(0,ν)

|q(k)

δ |
}

.

The set of SW global responses associated with the {0, ν} pair is then defined by the
following local maxima:

{qsw,ν} :=
{

arg max
q∈Qa∩Qs

∣

∣

∣

∑

k

‖q(k)‖4
4 K(k)

s

∣

∣

∣

}

∩ Q(0)

ν .

1Note that under S1)–S3), a particular user/delay combination is “associated” with an estimate if
and only if that user/delay contributes more energy to the estimate than any other user/delay.
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It is not possible to write general closed-form expressions for {qsw,ν}, making it difficult
to characterize their performance.

Consider a reference global response qr,ν ∈ Qa ∩ Qs ∩ Q(0)
ν . In other words, qr,ν is

an attainable unit-norm response associated with user/delay {0, ν}. When qr,ν is in the
vicinity of a qsw,ν (the meaning of which will be made more precise later), we know that

∣

∣

∣

∑

k

‖q(k)

sw,ν‖
4

4
K(k)

s

∣

∣

∣
≥

∣

∣

∣

∑

k

‖q(k)

r,ν‖
4

4
K(k)

s

∣

∣

∣
=

∣

∣K(yr)
∣

∣.

Thus this qsw,ν lies in the following set of global responses:

Qsw(qr,ν) :=
{

q s.t.
∣

∣

∣

∑

k

‖q(k)‖4
4 K(k)

s

∣

∣

∣
≥

∣

∣K(yr)
∣

∣

}

∩ Q(0)

ν ∩Qs. (8)

from which an SW-UMSE upper bound may be computed:

Ju,ν(qsw,ν) ≤ max
q∈Qsw(qr,ν)

Ju,ν(q). (9)

Note that (9) avoids explicit consideration of the attainability constraints of Qa; they
are implicitly incorporated via reference qr,ν ∈ Qa. Also note that the tightness of the
upper bound (9) will depend on the size and shape of Qsw(qr,ν), motivating careful choice
of qr,ν. In the sequel we choose the scaled MMSE reference qr,ν = qm,ν/‖qm,ν‖2

(when
qm,ν ∈ Q(0)

ν ) since it is an established benchmark with a closed-form expression.
Two simplifications will ease the evaluation of bound (9). The first is the removal of

absolute value signs in the definition (8). Recognize that for q sufficiently close to e
(0)
ν ,

sgn
(
∑

k ‖q(k)‖4
4 K(k)

s

)

= sgn
(

K(k)

s

)

, in which case

∣

∣

∣

∑

k

‖q(k)‖4
4 K(k)

s

∣

∣

∣
= sgn

(

K(k)

s

)

∑

k

‖q(k)‖4
4 K(k)

s . (10)

Our bounds will impose conditions that ensure this behavior.
Next, since both the SW and UMSE criteria are invariant to phase rotation of q

(i.e., scalar multiplication of q by ejφ for φ ∈ R), we can restrict the our attention to
the set of “de-rotated” global responses {q s.t. q(0)

ν ∈ R+}. For de-rotated responses

q ∈ Qs ∩ Q(0)
ν , we know q(0)

ν =
√

1 − ‖q̄‖2
2, which implies that such q are completely

described by their interference response q̄ (as described in Section 2.2). Moreover, these
interference responses lie within Q̄(0)

ν , the projection of Q(0)
ν ∩Qs onto {q̄}:

Q̄(0)

ν :=
{

q̄ s.t.

√

1 − ‖q̄‖2
2 > max

(k,δ)6=(0,ν)
|q(k)

δ |
}

.

(See Fig. 2 for the construction of Q̄(0)
ν , whose boundary is illustrated by the thick shaded

curves.) Using this parameterization, (6) and (7) imply

Ju,ν(qsw,ν)/σ
2
s

∣

∣

∣

∣

q∈Qs∩Q
(0)
ν

= ‖q̄‖2
2/

(

1 − ‖q̄‖2
2

)

∑

k

‖q(k)‖4
4 K(k)

s

∣

∣

∣

∣

q∈Qs∩Q
(0)
ν

=
(

1 − ‖q̄‖2
2

)2 K(0)

s +
∑

k

‖q̄(k)‖4
4 K(k)

s . (11)
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Figure 2: Q̄(0)
ν , created by projecting Q(0)

ν ∩
Qs onto the interference space. The bound-
ary of Q̄(0)

ν is demarcated by the thick
shaded curves.
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ν }

Figure 3: Illustration of SW-UMSE bound-
ing technique in the interference space {q̄},
i.e., the horizontal plane in Fig. 2.

With the two simplifications above, (9) becomes

Ju,ν(qsw,ν) ≤ max
q̄∈Q̄sw(qr,ν)

Ju,ν(q̄).

where Q̄sw is the following {q̄}-space projection of Qsw:

Q̄sw(qr,ν) :=







{

q̄ ∈ Q̄(0)
ν s.t.

(

1 − ‖q̄‖2
2

)2 K(0)

s +
∑

k ‖q̄(k)‖4
4 K(k)

s ≥ K(yr)
}

, K(0)

s > 0,
{

q̄ ∈ Q̄(0)
ν s.t.

(

1 − ‖q̄‖2
2

)2 K(0)

s +
∑

k ‖q̄(k)‖4
4 K(k)

s ≤ K(yr)
}

, K(0)

s < 0.
(12)

Finally, since Ju,ν(q̄) is strictly increasing in ‖q̄‖2 (over its valid range), we claim

Ju,ν(qsw,ν) ≤ b2
∗/(1 − b2

∗) where b∗ := max
q̄∈Q̄sw(qr,ν)

‖q̄‖2. (13)

The constrained maximization of b∗ can be restated as the following minimization.

b∗ = min
b

s.t.
{

q̄ ∈ Q̄sw(qr,ν) ⇒ ‖q̄‖2 ≤ b
}

(14)

Fig. 3 presents a summary of the bounding procedure in the interference response
space {q̄}. The set of attainable interference responses is denoted by Q̄a, which can be
interpreted as a projection of Qa∩Qs∩Q(0)

ν onto {q̄}. Notice that the reference response
q̄r,ν and the SW response q̄sw,ν both lie on Q̄a. Though the exact location of q̄sw,ν is
unknown, we know that it is contained by Q̄sw(qr,ν), depicted in Fig. 3 by the shaded
region. Thus, an upper bound on the UMSE of the SW estimator can be calculated
using b∗, the maximum interference radius over Q̄sw(qr,ν). As a cautionary note, there
exist situations where the shape of Q̄sw(qr,ν) prevents containment by a q̄-space ball.
In the next section we present conditions (derived in [2]) which avoid these problematic
situations.
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3.2 The SW-UMSE Bounds

In this section we present SW-UMSE bounds based on the method described in Sec-
tion 3.1. Proofs appear in [2].

The following kurtosis-based quantities will all prove useful in the sequel:

Kmin
s := min

0≤k≤K

K(k)

s , Kmax
s := max

0≤k≤K

K(k)

s

ρmin :=
Kmin

s

K(0)

s

, ρmax :=
Kmax

s

K(0)

s

Theorem 1. When K(ym), the kurtosis of estimates generated by the Wiener estimator
associated with the desired user at delay ν, obeys

{

K(0)

s ≥ K(ym) >
(

K(0)

s +Kmax
s

)

/4, for K(0)

s > 0,

K(0)

s ≤ K(ym) <
(

K(0)

s +Kmin
s

)

/4, for K(0)

s < 0,
(15)

the UMSE of SW estimators associated with the same user/delay can be upper bounded

by Ju,ν

∣

∣

max,K(ym)

sw,ν
, where

Ju,ν

∣

∣

max,K(ym)

sw,ν
:=



































1−
r

(ρmax+1)
K(ym)

K
(0)
s

−ρmax

ρmax+
r

(ρmax+1)
K(ym)

K
(0)
s

−ρmax

σ2
s , for K(0)

s > 0,

1−
r

(ρmin+1)
K(ym)

K
(0)
s

−ρmin

ρmin+
r

(ρmin+1)K(ym)

K
(0)
s

−ρmin

σ2
s , for K(0)

s < 0.

(16)

Furthermore, (15) guarantees the existence of a SW estimator associated with this user/delay
when q is FIR.

While Theorem 1 presents a closed-form SW-UMSE bounding expression in terms of
the kurtosis of the MMSE estimates, it is also possible to derive lower and upper bounds
in terms of the UMSE of the MMSE estimator.

Theorem 2. If Ju,ν(qm,ν) < Joσ
2
s , where

Jo :=



















































2
√

(1 + ρmax)−1 − 1 K(0)

s > 0, Kmin
s ≥ 0

1−
√

1−(3−ρmax)(1+ρmin)/4

ρmin+
√

1−(3−ρmax)(1+ρmin)/4
, K(0)

s > 0, Kmin
s < 0, Kmin

s 6= −K(0)

s

3−ρmax

5+ρmax
K(0)

s > 0, Kmin
s < 0, Kmin

s = −K(0)

s

2
√

(1 + ρmin)−1 − 1 K(0)

s < 0, Kmax
s ≤ 0

1−
√

1−(3−ρmin)(1+ρmax)/4

ρmax+
√

1−(3−ρmin)(1+ρmax)/4
, K(0)

s < 0, Kmax
s > 0, Kmax

s 6= −K(0)

s

3−ρmin

5+ρmin
K(0)

s < 0, Kmax
s > 0, Kmax

s = −K(0)

s

(17)

the UMSE of SW estimators associated with the same user/delay can be bounded as
follows:

Ju,ν(qm,ν) ≤ Ju,ν(qsw,ν) ≤ Ju,ν

∣

∣

max,K(ym)

sw,ν
≤ Ju,ν

∣

∣

max,Ju,ν(qm,ν)

sw,ν
,
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where

Ju,ν

∣

∣

max,Ju,ν(qm,ν)

sw,ν
:= (18)















































































































1−

s

(1+ρmax)

„

1+
Ju,ν(qm,ν)

σ2
s

«−2

−ρmax

ρmax+

s

(1+ρmax)

„

1+
Ju,ν (qm,ν )

σ2
s

«−2

−ρmax

σ2
s K(0)

s > 0, Kmin
s ≥ 0

1−

s

(1+ρmax)

„

1+
Ju,ν(qm,ν)

σ2
s

«−2„

1+ρmin
J2
u,ν(qm,ν )

σ4
s

«

−ρmax

ρmax+

s

(1+ρmax)

„

1+
Ju,ν (qm,ν )

σ2
s

«−2„

1+ρmin
J2
u,ν(qm,ν)

σ4
s

«

−ρmax

σ2
s K(0)

s > 0, Kmin
s < 0

1−

s

(1+ρmin)

„

1+
Ju,ν(qm,ν)

σ2
s

«−2

−ρmin

ρmin+

s

(1+ρmin)

„

1+
Ju,ν(qm,ν)

σ2
s

«−2

−ρmin

σ2
s K(0)

s < 0, Kmax
s ≤ 0

1−

s

(1+ρmin)

„

1+
Ju,ν(qm,ν)

σ2
s

«−2„

1+ρmax
J2
u,ν(qm,ν)

σ4
s

«

−ρmin

ρmin+

s

(1+ρmin)

„

1+
Ju,ν(qm,ν)

σ2
s

«−2„

1+ρmax
J2
u,ν(qm,ν)

σ4
s

«

−ρmin

σ2
s K(0)

s < 0, Kmax
s > 0

Furthermore, (17) guarantees the existence of a SW estimator associated with this user/delay
when q is FIR.

Equation (18) leads to an elegant approximation of the extra UMSE of SW estimators:

Eu,ν(qsw,ν) := Ju,ν(qsw,ν) − Ju,ν(qm,ν).

Theorem 3. If Ju,ν(qm,ν) < Joσ
2
s , then the extra UMSE of SW estimators can be bounded

as Eu,ν(qsw,ν) ≤ Eu,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
, where

Eu,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
:= Ju,ν

∣

∣

max,Ju,ν(qm,ν)

sw,ν
− Ju,ν(qm,ν)

=































1
2σ2

s
ρmaxJ

2
u,ν(qm,ν) + O

(

J3
u,ν(qm,ν)

)

K(0)

s > 0, Kmax
s ≥ 0

1
2σ2

s
(ρmax − ρmin)J

2
u,ν(qm,ν) + O

(

J3
u,ν(qm,ν)

)

K(0)

s > 0, Kmax
s < 0

1
2σ2

s
ρminJ

2
u,ν(qm,ν) + O

(

J3
u,ν(qm,ν)

)

K(0)

s < 0, Kmax
s ≤ 0

1
2σ2

s
(ρmin − ρmax)J

2
u,ν(qm,ν) + O

(

J3
u,ν(qm,ν)

)

K(0)

s < 0, Kmax
s > 0

(19)

Equation (19) implies that the extra UMSE of SW estimators is upper bounded by
approximately the square of the minimum UMSE. Fig. 4 plots the upper bound on SW-
UMSE and extra SW-UMSE from (18) as a function of Ju,ν(qm,ν)/σ

2
s for various values

of ρmin and ρmax. The second-order approximation based on (19) appears very good for
all but the largest values of UMSE.

3.3 Comment: Implicit Incorporation of Qa

First, recall that the SW-UMSE bounding procedure incorporated Qa, the set of at-
tainable global responses, only in the requirement that qr,ν ∈ Qa ∩ Qs ∩ Q(0)

ν . Thus
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Figure 4: Upper bound on (a) SW-UMSE and (b) extra SW-UMSE versus Ju,ν(qm,ν) (when
σ2

s = 1) from (18) with second-order approximation from (19). From left to right, {ρmin, ρmax} =
{1000, 0}, {1,−2}, and {1, 0}.

Theorems 1–3, written under the reference choice qr,ν = qm,ν/‖qm,ν‖2
∈ Qa ∩ Qs ∩ Q(0)

ν ,
implicitly incorporate the channel and/or estimator constraints that define Qa. For ex-
ample, if qm,ν is the MMSE response constrained to the set of causal IIR estimators, then
SW-UMSE bounds based on this qm,ν will implicitly incorporate the causality constraint.
The implicit incorporation of the attainable set Qa makes these bounding theorems quite
general and easy to use.

4 Numerical Examples

Here we present the results of an experiment which compares our UMSE bounds to the
UMSE characterizing SW estimators found by gradient descent.2 Ten super-Gaussian
sources (K(k)

s = 2) were mixed using matrix H with real-valued zero-mean Gaussian
entries. The estimator observed the mixture in the presence of AWGN (at -20dB) and
generated estimates of a particular source using 8 adjustable parameters. Note that the
number of sensors is less than the number of sources and that noise is present, implying
that H is not full column rank and perfect estimation is not possible.

Fig. 5(a) plots the UMSE upper bounds Ju,ν

∣

∣

max,K(ym)

sw,ν
and Ju,ν

∣

∣

max,Ju,ν(qm,ν)

sw,ν
for com-

parison with Ju,ν(qsw,ν). As a means of “zooming in” on the small differences in UMSE,

Fig. 5(b) plots the extra-UMSE upper bounds Eu,ν

∣

∣

max,K(qm,ν)

c,ν
and Eu,ν

∣

∣

max,Ju,ν(qm,ν)

c,ν
. The

Ju,ν(qm,ν)-based bounds are denoted by solid lines, the K(qm,ν)-based bounds are denoted

2Gradient descent results were obtained by the Matlab routine “fmincon,” which was initialized
randomly in a small ball around the MMSE estimator.
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by •’s, and the gradient-descent values are denoted by ×’s. Note the tightness of the
bounds for all but the largest values of Ju,ν(qm,ν).
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Figure 5: Bounds on SW-UMSE for Nf = 8, 10 sources with K(k)
s = 2, AWGN at -20dB, and

random H.

5 Conclusions

In this paper we have derived conditions under which SW estimators exist and derived
bounds for the UMSE of SW estimators. The existence conditions are simple tests
which guarantee a SW estimator for the desired user at a particular delay, and these
existence arguments have been proven for vector-valued FIR channels and constrained
vector-valued FIR estimators. The first bound is a function of the kurtosis of the MMSE
estimates, while the second bound is a function of the minimum UMSE. Analysis of
the second bound shows that the extra UMSE of SW estimators is upper bounded by
approximately the square of the minimum UMSE. Thus, SW estimators are very close (in
a MSE sense) to optimum linear estimators when the minimum MSE is small. Numerical
simulations suggest that the bounds are reasonably tight.
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