# Compressive Phase Retrieval via Generalized Approximate Message Passing

#### Philip Schniter



Joint work with Sundeep Rangan.

Supported in part by NSF grant CCF-1018368 and DARPA/ONR grant N66001-10-1-4090.

Allerton - Oct. 3, 2012

#### Phase Retrieval

• <u>Goal</u>: Recover signal  $x_0 \in \mathbb{C}^n$  from m magnitude-only measurements

$$\boldsymbol{y} = |\boldsymbol{A}\boldsymbol{x}_0 + \boldsymbol{w}|,$$

where  $oldsymbol{A} \in \mathbb{C}^{m imes n}$  is a known linear transform and  $oldsymbol{w} \in \mathbb{C}^m$  is noise.

- <u>Motivation</u>: In many applications, it feasible to measure the intensity, but not the phase, of the Fourier transform of the signal-of-interest:
  - X-ray crystallography,
  - transmission electron microscopy,
  - coherent diffractive imaging,
  - astronomical imaging, etc.
- Feasibility: To make the solution to y = |Ax| unique (up to a global phase) w.p.1, m=3n-2 i.i.d Gaussian measurements are necessary [Finkelstein'04] and m=4n-2 are sufficient [Balan/Casazza/Edidin'06].

# Phase Retrieval: Classical Approaches

Most classical approaches are iterative in nature. For example,

- Alternate between...
  - projecting  $A\hat{x}$  onto the magnitude constraint y, yielding  $\hat{z}$ ,
  - projecting  $A^+ \hat{z}$  onto an apriori known support set, yielding  $\hat{x}$ .

However, due to the non-convexity of the first projection, it is easy for such algorithms to get trapped in local minima.

# Phase Retrieval: Convex Approaches

Recently, some convex relaxations have been proposed.

- Noting that  $y_i^2 = |\mathbf{a}_i^{\mathsf{H}} \mathbf{x}|^2 = \operatorname{tr}(\mathbf{a}_i \mathbf{a}_i^{\mathsf{H}} \mathbf{X})$  for  $\mathbf{X} = \mathbf{x} \mathbf{x}^{\mathsf{H}}$ , pose as "min $\mathbf{X} \succeq 0$  rank $(\mathbf{X})$  s.t.  $\operatorname{tr}(\mathbf{a}_i \mathbf{a}_i^{\mathsf{H}} \mathbf{X}) = y_i^2$  for i = 1...m." (NP hard!) Relax to "min  $\operatorname{tr}(\mathbf{X})$  s.t.  $\operatorname{tr}(\mathbf{a}_i \mathbf{a}_i^{\mathsf{H}} \mathbf{X}) = y_i^2$  for i = 1...m," (convex!) known as PhaseLift [Candes/Eldar/Strohmer/Voroninski'11].
- Another semidefinite program (with similar performance) known as PhaseCut was proposed in [Waldspurger/D'Aspremont/Mallat'12].

It was recently shown [Candes/Li'12] that

- with very high probability, PhaseLift perfectly recovers an arbitrary x from  $m \ge c_0 n$  noiseless measurements, where  $c_0$  is a constant,
- and PhaseLift can be made robust to noise.

## Compressive Phase Retrieval

- Recall that  $m \ge 3n 2$  magnitude measurements are needed for y = |Ax| to have a unique solution for  $x \in \mathbb{C}^n$ .
- Sometimes we can only afford m < 3n 2 magnitude measurements, in which case the problem becomes one of compressive phase retrieval.
- For successful compressive phase retrieval (CPR), one needs to leverage additional structure in *x*, such as sparsity.

#### Compressive Phase Retrieval: Prior Work

• Assuming knowledge of  $\|\boldsymbol{x}_0\|_1$ , [Moravec/Romberg/Baraniuk'07]

- appended this constraint onto the classical RAAR algorithm, and
- used RIP-based arguments to establish that  $m \gtrsim k^2 \log(n/k^2)$ magnitude measurements suffice for recovery.

However, the algorithm was prone to local minima and slow convergence. Also, knowledge of  $||x_0||_1$  is rarely available in practice.

• Taking a convex approach, [Ohlsson/Yang/Dong/Sastry'12] proposed the following generalization of PhaseLift, which they call CPRL:  $\min_{\boldsymbol{X} \succeq 0} \operatorname{tr}(\boldsymbol{X}) + \lambda \|\boldsymbol{X}\|_1 + \mu \sum_{i=1}^m |\operatorname{tr}(\boldsymbol{a}_i \boldsymbol{a}_i^{\mathsf{H}} \boldsymbol{X}) - y_i^2|^2$  for i = 1...m, and performed both RIP and mutual coherence analyses. Seems promising. . . Zed: Bring out the Gimp.

Maynard: Gimp's sleeping.

Zed: Well, I guess you're gonna have to go wake him up now, won't you? —Pulp Fiction, 1994.

We propose a new approach to CPR based on generalized approximate message passing (GAMP).

Numerical results show

- excellent phase transitions,
- excellent NMSE & robustness to noise,
- excellent runtime,

with direct application to compressive image retrieval.

# Generalized Approximate Message Passing (GAMP)

- The evolution of GAMP:
  - The original AMP [Donoho/Maleki/Montanari'09] solves the LASSO problem  $\min_{\boldsymbol{x}} \|\boldsymbol{y} \boldsymbol{A}\boldsymbol{x}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$  popular in compressive sensing, i.e., MAP estimation under i.i.d Laplacian signal and AWGN.
  - The Bayesian AMP [Donoho/Maleki/Montanari'10] extended the above to generic i.i.d signal priors and MMSE estimation.
  - The generalized AMP [Rangan'10] extended the above to generic i.i.d likelihood models of the form  $p_{Y|Z}(y_i|a_i^{\mathsf{H}}x)$ .
- In the end, GAMP produces a sophisticated iterative thresholding alg, whose complexity is dominated by one application of *A* and *A*<sup>H</sup> per iteration with relatively few (e.g., tens) iterations. Very fast!
- Rigorous large-system analyses (under i.i.d Gaussian A) have established that (G)AMP follows a state-evolution trajectory with optimal properties [Bayati/Montanari'10], [Rangan'10].

### GAMP Heuristics (Sum-Product)

Message from 
$$y_i$$
 node to  $x_j$  node:  

$$\approx \mathcal{N} \text{ via CLT}$$

$$p_{i \to j}(x_j) \propto \int_{\{x_r\}_{r \neq j}} p_{Y|Z}(y_i; \sum_r a_{ir} x_r, \psi) \prod_{r \neq j} p_{i \leftarrow r}(x_r)$$

$$p_{Y|Z}(y_m|[\mathbf{A}\mathbf{x}]_m, \psi)$$

$$p_{Y|Z}(y_m|[\mathbf{A}\mathbf{x}]_m, \psi)$$

$$p_{Y|Z}(y_m|[\mathbf{A}\mathbf{x}]_m, \psi)$$

$$p_{Y|Z}(y_m|[\mathbf{A}\mathbf{x}]_m, \psi)$$

$$p_{Y|Z}(y_m|[\mathbf{A}\mathbf{x}]_m, \psi)$$

To compute  $\hat{z}_i(x_j), \nu_i^z(x_j)$ , the means and variances of  $\{p_{i \leftarrow r}\}_{r \neq j}$  suffice, thus Gaussian message passing!

Remaining problem: we have 2mn messages to compute (too many!).

Philip Schniter (OSU)

Compressive Phase Retrieval via GAMP

#### GAMP for Phase Retrieval

- To apply GAMP, we need an appropriate likelihood function  $p_{Y|Z}(y_i|z_i)$ , where r.v. Y represents the noisy magnitude measurements  $y_i$  and r.v. Z represents the corresponding noiseless transform outputs  $z_i \triangleq a_i^{\mathsf{H}} x$ .
- For this, we assume the statistical model

 $y_i = e^{\mathbf{j}\theta_i}(z_i + w_i)$  with  $\theta_i \in \mathcal{U}[0, 2\pi)$  and  $w_i \sim \mathcal{CN}(0, \nu^w)$ ,

from which we margin out  $\theta_i$  and  $w_i$  to obtain

$$p_{Y|Z}(y_i|z_i) = \frac{1}{\pi\nu^w} e^{-\frac{(|y_i| - |z_i|)^2}{\nu^w}} I_0(\rho) e^{-\rho} \quad \text{for} \quad \rho \triangleq \frac{2|y| \, |z|}{\nu^w},$$

where  $I_0(\cdot)$  is the 0<sup>th</sup>-order modified Bessel function of the first kind.

• See paper for other algorithmic details.

10 / 17

For our numerical results we generated

- the signal  $x_0$  as k-sparse Bernoulli-circular-Gaussian,
- the matrix as  $A = \Phi F$  where  $\Phi \in \mathbb{C}^{m \times n}$  is i.i.d circular Gaussian and F is the  $n \times n$  DFT matrix,
- ullet the (pre-magnitude) noise w as circular white Gaussian,

and we monitored the phase-corrected normalized reconstruction MSE

$$\mathsf{NMSE} riangleq \min_{ heta} rac{\|\hat{m{x}} - e^{\mathrm{j} heta} m{x}_0\|_2^2}{\|m{x}_0\|_2^2}.$$

Allerton - Oct. 3, 2012

11 / 17

PR-GAMP's empirical success rate, averaged over 500 realizations, was



#### Comparison to phase-oracle

Comparing the 50%-success contours of PR- and phase-oracle GAMP:



we see that PR-GAMP requires about  $4 \times$  the number of measurements.

# Noise Robustness of PR-GAMP

The median NMSE, measured over 2000 realizations:



shows that PR-GAMP loses about 3 dB at medium-to-high SNR.

# Compressive Image Recovery

65536 image pixels, 32768 measurements, 30dB SNR:



Philip Schniter (OSU)

Compressive Phase Retrieval via GAMP

Allerton - Oct. 3, 2012 15 / 17

# Comparison to CPRL [Ohlsson/Yang/Dong/Sastry'12]

Empirical success rate (and runtime) on two toy problems:

|        |         | (m,n) = (20,32) | (m,n) = (30,48) | (m,n) = (40, 64) |
|--------|---------|-----------------|-----------------|------------------|
| k = 1: | CPRL    | 0.96 (4.9 sec)  | 0.97 (51 sec)   | 0.99 (291 sec)   |
|        | PR-GAMP | 0.83 (0.4 sec)  | 0.94 (0.3 sec)  | 0.99 (0.3 sec)   |
|        |         |                 |                 |                  |
|        |         | (m,n) = (20,32) | (m,n) = (30,48) | (m,n) = (40, 64) |
| k = 2: | CPRL    | 0.55 (5.8 sec)  | 0.55 (58 sec)   | 0.58 (316 sec)   |
|        | PR-GAMP | 0.72 (0.4 sec)  | 0.92 (0.3 sec)  | 1.0 (0.3 sec)    |

Notice:

- CPRL works great with sparsity k = 1, but poorly when  $k \ge 2$ . GAMP instead suffers when problem dimensions are small.
- CPRL's runtime grows very quickly with problem dimensions! GAMP's runtime is negligible for these toy problems.

# Conclusions

- (Compressive) phase retrieval is a longstanding problem that is experiencing a rebirth through compressive sensing and convex relaxation.
- We proposed a new approach to CPR based on generalized approximate message passing (GAMP).
- Empirical results show an excellent phase transition (4×meas of phase-oracle), excellent noise robustness (~ 3 dB worse than phase-oracle), and excellent runtime (many orders of magnitude faster than convex relaxation).
- As a practical demonstration, we accurately recovered a 64k-pixel image from 32k measurements in only 11 seconds.