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Abstract

Present wireless communication systems are required to support a variety of high-

speed data communication services for its users, such as video streaming and cloud-

based services. As the users’ demands for such services grow, more efficient wireless

systems need to be designed that can support high-speed data and, at the same

time, serve the users in a fair manner. One method to achieve this is by using

efficient resource allocation schemes at the transmitters of wireless communication

systems. Here, the term “resources” refers to the fundamental physical and network-

layer quantities that limit the amount of data that can be transmitted over a com-

munication link, such as available bandwidth and power. With the above fact in

mind, we study, in this dissertation, physical and network-layer resource allocation

problems in three different communication systems, and propose various optimal and

sub-optimal solutions. First, we consider point-to-point links and propose greedy low

and high-complexity rate-assignment schemes using degraded feedback (ACK/NAK)

to maximize goodput of the system. Here, goodput is defined as the amount of

data that a transmitter can send to the receiver without any error. Second, we

propose optimal and sub-optimal schemes for simultaneous user-scheduling, power-

allocation, and rate-selection in an Orthogonal Frequency Division Multiple Access

(OFDMA) downlink, with the goal of maximizing expected sum-utility under a sum-

power constraint and the availability of imperfect channel-state information at the
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transmitter. Finally, we consider allocation of network resources in the downlink of

large multi-cellular OFDMA-networks and answer, from the view-point of a service

provider, complex questions related to network design such as: How many base-

stations need to be installed, or how much bandwidth should be purchased given

a particular revenue-target, or what pricing scheme must be employed to meet the

Quality-of-Service constraints of users and, at the same time, maximize revenue for

the service provider? Using our analysis, we also propose a near-optimal resource

allocation scheme for multi-cellular OFDMA systems under a truncated path-loss

model and different fading models (Rayleigh, Nakagami-m, Weibull, and LogNormal)

that is optimal in the scaling sense.
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Chapter 1: Introduction

A wireless communication system is a system that enables communication be-

tween two or more users (or people or devices). Examples of such systems include

mobile communication systems, satellite communication systems (GPS), AM/FM ra-

dio systems, and under-water communication systems. The most common wireless

communication system in present-day world is the mobile communication system

which supports communication between users having wireless devices, such as smart-

phones, tablets, and computers, via a network of service-nodes, such as base-stations,

femtocells, and relays. In this dissertation, we will explore some issues that arise in

the design of such systems.

Over the last decade, there has been a tremendous growth in the usage of mobile

communication systems for information (or, data) transfer, typically in the form of

voice-data or web-based data. This growth is attributed to the rise in number of wire-

less devices, particularly smartphones, and an increase in the number of web-based

services, for example, video streaming, cloud-computing, banking etc. To meet this

increasing data-demand of a growing number of users, better communication systems

need to be designed. A complete study of a such big systems is quite complicated and

is out of the scope of this dissertation. Here, we will focus on one of its aspects, namely

1



“resource allocation”, using which efficiency/performance of the system can be en-

hanced. Examples of some other methods that are useful in supporting the increasing

data-demand of users include developing better application-specific protocols, better

data-compression algorithms, and better channel-coding schemes.

From a systems standpoint, the fundamental basis of any wireless communication

system is the wireless link between transmitter(s) and receiver(s) that supports data

transfer from transmitter(s) to receiver(s). The amount of information that can be

transferred from transmitter(s) to receiver(s) over this link is limited by the amount

of resources available at the transmitter(s). Typically, these resources are power and

bandwidth. Further, these resources (power and bandwidth) are limited in almost ev-

ery communication system. Therefore, efficient resource allocation schemes must be

developed to exploit available resources in the best possible manner and provide ubiq-

uitous high-data-rate to all users in a fair manner. In this dissertation, we study three

different types of mobile-communication systems (point-to-point, single-cell OFDMA,

and multi-cell OFDMA), and propose various optimal and/or near-optimal resource

allocation schemes for each system. Using our analyses, we also provide design guide-

lines for service providers to design large multi-cellular communication systems while

satisfying Quality-of-Service (QoS) requirements of users and revenue-targets of ser-

vice providers.

1.1 Attacked Problems and Our Contributions

Brief descriptions of the problems considered in this dissertation, along with a

summary of contributions towards each problem, are listed below:
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1. In Chapter 2, we study the problem of code-rate adaptation in point-to-point

links. In particular, we consider packetized time-varying continuous-state chan-

nels with link-layer feedback available at the transmitter in the form of per-

packet ACK/NAKs (acknowledgements/negative acknowledgements). We pro-

pose a greedy code-rate adaptation algorithm and analyze the impact of limited

(link-layer) feedback on per-packet information transfer on the “adaptiveness”

of code-rate controllers. The metric associated with the performance is good-

put. The sequence of ACK/NAKs gives a distributional estimate of the channel

state. We use this estimate to achieve rate adaptation to maximize goodput.

From the viewpoint of resource allocation, ACK/NAK feedback is quite differ-

ent than pilot-aided feedback. While pilot-aided feedback provides an indicator

of the absolute channel gain, ACK/NAK provides an indicator of the channel

gain relative to the chosen user/power/rate; an ACK implies that the channel

was good enough to support the user (with allocated power and rate) while a

NAK implies otherwise. As a result, with ACK/NAK feedback based resource

allocation, the chosen user/power/rate affects not only the subsequent utility

but also the quality of the subsequent feedback, which in turn will affect future

utilities through future resource assignments. In fact, with ACK/NAK feed-

back, optimal resource allocation assignment for communication over Markov

channels turns out to be a POMDP policy with uncountable number of states

and actions, which is impractical to implement.

We show, via simulations, that the proposed rate adaptation scheme is a con-

siderable improvement over fixed code-rate schemes with minimal extra compu-

tation. In fact, our scheme achieves up to 90% of the goodput gain achieved by
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optimal genie-based schemes that use perfect causal/non-causal CSI for rate-

adaptation over fixed code-rate schemes. We also show that the performance

of the proposed (greedy) scheme outperforms the POMDP (Partially Observ-

able Markov Decision Process) based optimal rate adaptation under discretized

channel-models with up to 7 discrete states. Since POMDP-based optimal rate-

adaptation for discrete-Markov channels with 7 or more states is computation-

ally intensive, our greedy rate-adaptation scheme based on a continuous-Markov

channel model is more appealing.

2. In Chapter 3, we study the downlink of a single-cell OFDMA (Orthogonal

Frequency Division - Multiple Access) system under the availability of proba-

bilistic CSI for all users at the transmitter (or, base-station). In cases where

subchannel-sharing among users is allowed, we propose an optimal algorithm

to simultaneously schedule users across OFDM subchannels, and allocate them

powers and code-rates for system-wide utility maximization. In other cases

where subchannel-sharing is not allowed, we propose a near-optimal algorithm

and bound its performance. Our algorithms are bisection-based and are faster

than other state-of-the-art algorithms (subgradient or golden-section based al-

gorithms) that address resource allocation problems in OFDMA systems. More-

over, unlike other algorithms, theoretical performance guarantees as a function

of any finite number of iterations are provided for our algorithms.

3. In Chapter 4, we consider an application of the previously considered joint

scheduling and resource-allocation problem for utility maximization in single-

cell OFDMA downlink systems. Here, binary ACK/NAKs are used to obtain
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channel-state information (CSI) of the scheduled users at each time-slot. We

propose a sub-optimal greedy resource allocation algorithm to schedule users,

and allocate powers and code-rates. We show that a significant portion of

the goodput gain achieved by the perfect-CSI based optimal algorithm over

no-feedback can be achieved by our algorithm, which assumes: 1) usage of

ACK/NAK feedback that is coarse, and 2) a situation where users that are not

scheduled in a given time-slot do not send any feedback to the transmitting base-

station. Our algorithm infers distributional estimates of channel-gains of every

user using the available feedback (ACK/NAK) and uses them for scheduling.

In order to compute these distributional estimates at each time-slot, we provide

a computationally-efficient iterative algorithm based on particle filters.

4. In Chapter 5, we study multi-cellular OFDMA-based downlink systems and

propose, for a general spatial geometry of transmitters and end-users, bounds

on the achievable sum-rate as a function of the number, K, of users, the num-

ber, B, of base-stations, and the number, N , of available resource-blocks. Here,

a resource block is a collection of subcarriers such that all such disjoint collec-

tions have associated independently fading channels. We evaluate the bounds

for dense networks and regular-extended networks under uniform spatial distri-

bution of users using extreme-value theory, and derive scaling laws for a trun-

cated path-loss model and a variety of fading models (Rayleigh, Nakagami-m,

Weibull, and LogNormal). We then provide design principles for the service

providers that guarantee users’ QoS constraints while maximizing revenue. Fi-

nally, we propose a practical scheme that achieves the same sum-rate scaling

5



law as that achieved by the optimal resource allocation policy for a wide range

of parameters (K,B,N).

5. Chapter 6 gives conclusions, contributions, and directions for future work.

Proofs of various results in Chapters 2, 3, and 5 are provided in Appendix A,

Appendix B, and Appendix C, respectively.
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Chapter 2: Rate Adaptation via Link-Layer Feedback in

Point-to-Point Links

2.1 Motivation

In point-to-point links, one transmitter wirelessly transmits data to one receiver.

As mentioned in the previous chapter, a limited amount of resources, i.e, power and

bandwidth, are available at the transmitter. Under an instantaneous power con-

straint, to maximize the reliability and amount of transmitted data, the transmitter

will use all available power and bandwidth in each channel use. However, even in such

cases, the maximum achievable goodput, defined as the maximum amount of data that

can be transmitted on average, after discounting errors, may not be achieved. This

is because most modulation and coding schemes that are used in practical systems

are not capacity-achieving. Therefore, we are motivated to developed rate-adaptation

schemes for point-to-point links in the presence of practical modulation and coding

schemes that enable higher-goodput achievability.

Rate adaptation [1–15] achieves higher goodput by combating channel variability,

which is common to all wireless communication systems due to factors such as fading,

mobility, and multiuser interference. The idea is that, based on the predicted channel

state, the transmitter optimizes the data rate in an effort to maximize the goodput.
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For example, when the channel quality is below average, the data rate should be

decreased to avoid reception errors, while, when the channel quality is above average,

the data rate should be increased to prevent the channel from being underutilized.

Rate adaptation would be relatively straightforward if the transmitter could per-

fectly predict the channel. In practice, however, maintaining accurate transmitter

channel state information is a nontrivial task that can consume valuable resources.

Fortunately, error rate feedback in the form of single-bit ACK/NAKs are a standard

provision in most networks by means of ARQ (Automatic Repeat reQuest). There-

fore, rate adaptation using single-bit error-rate feedback comes at zero additional load

on downlink/uplink channels and are of interest.

2.2 Overview and Related Work

In this chapter, we focus on rate adaptation schemes to improve performance of

point-to-point systems wherein channel state knowledge is inferred by monitoring

packet acknowledgments/negative-acknowledgments (ACK/NAKs) [5–15], i.e., the

feedback information used for automatic repeat request (ARQ). Since ARQ feedback

is a standard provision of the link layer, its use by the physical layer comes essentially

“for free.”

From the viewpoint of rate adaptation, ACK/NAK feedback is quite different than

channel-state feedback. While channel-state feedback provides an indicator of the

absolute channel gain, ACK/NAK provides an indicator of the channel gain relative

to the chosen data rate; an ACK implies that the channel was good enough to support

the rate while a NAK implies otherwise. As a result, with ACK/NAK-feedback

based rate adaptation, the chosen data rate affects not only the subsequent goodput
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but also the quality of the subsequent feedback, which in turn will affect future

goodputs through future rate assignments. In fact, with ACK/NAK feedback, optimal

rate assignment for communication over Markov channels can be recognized as a

dynamic program [14], in particular, a partially observable Markov decision process

(POMDP) [16].

In the next few sections, we consider the general problem of adapting the transmis-

sion rate via delayed and degraded error-rate feedback (in particular, ACK/NAK feed-

back) in order to maximize long-term expected goodput. In order to circumvent the

sub-optimality of finite-state channel approximations [17], we assume a Markov chan-

nel indexed by a continuous parameter. Because the optimal solution of the POMDP

is too difficult to obtain, we consider the use of greedy rate adaptation. First we es-

tablish that the optimal rate assignment is itself greedy when the error-rate feedback

is not degraded. Furthermore, we establish that the greedy non-degraded scheme can

be used to upper bound the optimal degraded scheme in terms of long-term goodput.

Second, we outline a novel implementation of the greedy rate assignment scheme.

For the example case of binary (i.e., ACK/NAK) degraded error-rate feedback, a

Rayleigh-fading channel, and uncoded QAM modulation, we show (numerically) that

the long-term goodput achieved by our greedy rate assignment scheme is close to the

upper bound.

Compared to the previous works [5–13], which are ad hoc in nature, we take a more

principled approach to cross-layer rate adaptation. Compared to the POMDP-based

work [14], our work differs in the following key aspects: 1) we employ a continuous-

state Markov channel model, 2) we consider delay in the feedback channel, and 3) we

propose simpler greedy heuristics, which we study analytically as well as numerically.
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Though our adaptation objective—goodput maximization—does not explicitly con-

sider the input buffer state,1 as does the one in [14], we show (numerically) that finite

buffer effects (e.g., packet delay and drop rate) are handled gracefully by our greedy

algorithms. In fact, one could argue that, since only successfully communicated pack-

ets are removed from the input queue, the maximization of short-term goodput—our

greedy objective—leads simultaneously to the minimization of buffer occupancy.

This chapter is organized as follows. In Section 2.3, we outline our system model,

and in Section 2.4, we consider optimal rate adaptation and suboptimal greedy

approaches. In Section 2.5, we detail a novel implementation of the greedy rate-

assignment scheme, which we then analyze numerically in Section 2.6 for the case

of uncoded QAM transmission, ACK/NAK feedback, and a Rayleigh-fading channel.

We summarize our findings in Section 2.7.

2.3 System Model

We consider a packetized transmission system in which the transmitter receives

delayed and degraded feedback on the success of previous packet transmissions (e.g.,

binary ACK/NAKs), which it uses to adapt the subsequent transmission parameters.

In particular, we assume the use of a transmission scheme parameterized by a data

rate of rt bits per packet, where t denotes the packet index. For simplicity, we assume

a fixed transmission power and a fixed packet length of p channel uses.

Figure 2.1 shows the system model. The time-varying wireless channel is modeled

by an SNR process {γt}, where the SNR γt > 0 is assumed to be constant over the

packet duration. Notice that γt is not assumed to be a discrete parameter. Since the

1 For algorithm design, we assume an infinitely back-logged queue.
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transmission power is fixed, {γt} is an exogenous process that does not depend on

the transmission parameters. The instantaneous packet error rate ǫ(rt, γt) varies with

the rate rt and SNR γt according to the particular modulation/demodulation scheme

in use. The instantaneous goodput G(rt, γt), defined as the number of successfully

communicated bits per channel use, is then defined as

G(rt, γt) ,
(
1− ǫ(rt, γt)

)
rt, (2.1)

where ǫ(rt, γt) denotes the error rate at time t. The transmitter uses ǫ̂t−d, an esti-

mated version of the (d > 1 delayed) error rate ǫ(rt−d, γt−d) to choose the time-t rate

parameter rt. We will assume that, for each rt, the function ǫ(rt, γt) is monotonically

decreasing in γt, so that γt can be uniquely determined given rt and the true error

rate ǫ(rt, γt).

controller
comm
system

feedback
channel

γt

G(rt, γt)

ǫ(rt, γt)
ǫ̂t−d

rt

Figure 2.1: System model.

Example 1. As an illustrative example, we now consider uncoded quadrature ampli-

tude modulation (QAM) using a square constellation of size m, and minimum-distance

11



decision making. At the link layer, where symbols are grouped to form packets, a fixed

number of extra cyclic redundancy check (CRC) bits are appended to each packet for

the purpose of error detection. We will assume the probability of undetected error

is negligible and the associated ACK/NAK error feedback is sent back to the trans-

mitter over an error-free reverse channel. We will also assume that the number of

CRC bits is small compared to the packet size, allowing us to ignore them in goodput

calculations.

Under an AWGN channel, and with γ describing the ratio of received symbol power

to additive noise power, the symbol error rate for minimum-distance decision making

is [18, p. 280]

1−
(

1− 2

(

1− 1√
m

)

Q

(√

3γ

m− 1

))2

, (2.2)

where Q(·) denotes the Q-function [18]. If we assume that the constellation size is

fixed over the packet duration, then the data rate equals rt = p log2mt and the packet

error rate equals

ǫ(rt, γt) = 1−
(

1− 2

(

1− 1√
2rt/p

)

Q

(√

3γt
2rt/p − 1

))2p

. (2.3)

Plugging (2.3) into (2.1) yields the instantaneous goodput expression, which identifies

a particular one-to-one mapping between rate rt and goodput for a fixed SNR γt. Thus,

if the SNR was known perfectly, then the goodput could be maximized by appropriate

choice of constellation size. Figure 2.2 plots instantaneous goodput contours versus

SNR γt and constellation sizemt for the case of p = 100 symbols per packet. Figure 2.2

also plots the (unique) goodput-maximizing constellation size as a function of SNR.

Here the finite set of allowed constellation choices (and hence rates) is apparent.

Note that, for this uncoded communication scheme, the SNR must be relatively high
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to facilitate rate adaptation; as long as the SNR remains below 14 dB, the goodput-

maximizing constellation size remains at m = 4 (i.e., QPSK). Coded transmission,

on the other hand, could facilitate rate adaptation at lower SNRs.
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Figure 2.2: Goodput contours versus SNR γt and constellation size mt for packet size
p = 100. The goodput maximizing constellation size, as a function of SNR, is shown
by the dash-dot line.

With ACK/NAK error feedback, the estimated error-rate ǫ̂t is a Bernoulli random

variable generated from ǫ(rt, γt) according to the conditional probability mass function

p
(
ǫ̂t = k

∣
∣ǫ(rt, γt)

)
=







ǫ(rt, γt) k = 1

1− ǫ(rt, γt) k = 0

0 else.

(2.4)

✷

While the previous example focuses on a particular modulation/demodulation

scheme and a particular error feedback model, we emphasize that the principal results
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in the sequel are general; no particular modulation/demodulation scheme and error

feedback model are assumed.

2.4 Optimal Rate Adaptation

In this section we formalize the problem of finite horizon goodput maximization.

For convenience we assume that process {γt, ǫ̂t, rt} has been initiated at time t = −∞,

though we consider only the finite sequence of packet indices {0, . . . , T} for goodput

maximization. Also, we use the abbreviation ǫt , ǫ(rt, γt).

For every packet index t > 0, we assume that the rate controller has access to the

estimated error-rate feedback ǫ̂t−d , [. . . , ǫ̂−2, ǫ̂−1, ǫ̂0, . . . , ǫ̂t−d], where d > 1 denotes

the causal feedback delay. Formally, we consider ǫ̂t−d to be degraded relative to the

true error-rate vector ǫt−d if

E{G(rt, γt) | ǫ̂t−d, rt−d} 6= E{G(rt, γt) | ǫt−d, rt−d} (2.5)

= E{G(rt, γt) | γt−d}, (2.6)

where rt−d , [. . . , r−2, r−1, r0, . . . , rt−d]. Equation (2.6) follows because each SNR γk

in γt−d , [. . . , γ−2, γ−1, γ0, . . . , γt−d] can be uniquely determined from the pair (ǫk, rk).

At packet index t, the optimal controller uses the degraded error-rate sequence

ǫ̂t−d (as well as knowledge of the previously chosen rates rt−d) to choose the rate rt

from a set R of admissible rates in order to maximize the total expected goodput for

the current and remaining packets:

r∗t , argmax
rt∈R

E

{

G(rt, γt) +
T∑

k=t+1

G(r∗k, γk)

∣
∣
∣
∣
ǫ̂t−d, rt−d

}

for t = 0, . . . , T .(2.7)
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The optimal expected sum goodput for packets {t, . . . , T} can then be written (for

t > 0) as

G∗
t (ǫ̂t−d, rt−d) , E

{ T∑

k=t

G(r∗k, γk)

∣
∣
∣
∣
ǫ̂t−d, rt−d

}

. (2.8)

For a unit2 delay system (i.e., d = 1), the following Bellman equation [19] specifies

the associated finite-horizon dynamic programming problem:

G∗
t (ǫ̂t−1, rt−1) = max

rt∈R

{
E{G(rt, γt) | ǫ̂t−1, rt−1}

+ E{G∗
t+1([ǫ̂t−1, ǫ̂t], [rt−1, rt]) | ǫ̂t−1, rt−1}

}
, (2.9)

where the second expectation is over ǫ̂t. The solution to this problem is sometimes

referred to as a partially observable Markov decision process (POMDP) [16].

For practical horizons T , optimal rate selection based on (2.9) is intractable, in

part due to the continuous-state nature of the channel.3 In fact, it is known that

POMDPs are PSPACE-complete, i.e., they require both complexity and memory

that grow exponentially with the horizon T [20]. For an intuitive understanding of

this phenomenon, notice from (2.9) that the solution of the rate assignment problem

at every time t depends on the optimal rate assignments up to time t − 1. But,

because both terms on the right side of (2.9) are dependent on rt, the solution of

the rate assignment problem at time t also depends on the solution of the rate as-

signment problem at time t + 1, which in turn depends on the solution of the rate

assignment problem at time t+ 2, and so on. Consequently, the much simpler greedy

2 For the d > 1 case, the Bellman equation is more complicated, and so we omit it for brevity.

3 Though a quantized channel approximation could—with few enough states—yield a tractable
POMDP solution, we show in Section 2.6 that channel quantization leads to significant loss in
goodput.
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rate assignment scheme

r̂t , argmax
rt∈R

E{G(rt, γt) | ǫ̂t−d, rt−d} for t = 0, . . . , T , (2.10)

is suboptimal.

The question of principal interest is then: What is the loss in goodput with the

greedy scheme (2.10) relative to the optimal scheme (2.7)? Since it is too difficult

to compute the optimal goodput (which depends on the optimal rate assignment

r∗T ), we instead compare the greedy scheme (2.10) to an upper bound on the optimal

goodput. To establish the upper bound, we show that greedy rate assignment using

non-degraded error-rate feedback yields a total goodput that is no less than that

of optimal rate assignment using degraded error-rate feedback. While the latter is

difficult to compute, the former is not.

We now detail the rate assignment scheme that leads to our total-goodput upper

bound. At packet index t, consider the rate assignment that maximizes the total

expected goodput for the current and remaining packets using knowledge of the non-

degraded feedback ǫt−d:

rcg

t , argmax
rt∈R

E

{

G(rt, γt) +
T∑

k=t+1

G(rcg

k , γk)

∣
∣
∣
∣
ǫt−d, rt−d

}

for t = 0, . . . , T .(2.11)

We refer to this scheme as the causal genie. Note that (2.11) differs from (2.7) only

in that ǫt−d is used in place of ǫ̂t−d. Because γt−d can be uniquely determined from

(ǫt−d, rt−d), the causal genie can also be written as

rcg

t = argmax
rt∈R

E

{

G(rt, γt) +
T∑

k=t+1

G(rcg

k , γk)

∣
∣
∣
∣
γt−d

}

for t = 0, . . . , T .(2.12)
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Since the choice of {rcg

k }Tk=t+1 will not depend on the choice of rt, the optimal expected

sum goodput for packets {t, . . . , T} can be written (for t > 0) as

Gcg

t (ǫt−d, rt−d) , max
rt∈R

E

{

G(rt, γt) +

T∑

k=t+1

G(rcg

k , γk)

∣
∣
∣
∣
γt−d

}

(2.13)

= E

{ T∑

k=t+1

G(rcg

k , γk)

∣
∣
∣
∣
γt−d

}

+max
rt∈R

E{G(rt, γt) | γt−d},(2.14)

which shows that optimal rate assignment under non-degraded causal error-rate feed-

back can be accomplished greedily. In other words,

rcg

t = argmax
rt∈R

E{G(rt, γt) | γt−d} (2.15)

= argmax
rt∈R

E{G(rt, γt) | ǫt−d, rt−d}. (2.16)

We now establish that the causal genie controller upper bounds the optimal con-

troller with degraded error-rate feedback in the sense of total goodput. Though

the result may be intuitive, the proof provides insight into the relationship between

degradation of the feedback and reduction of the total expected goodput.

Lemma 1. Given arbitrary past rates r−d and corresponding degraded error-rate feed-

back ǫ̂−d, the expected total goodput for optimal rate allocation under degraded feedback

is no higher than the expected total goodput for the causal-genie rate allocation under

non-degraded feedback, i.e.,

E

{ T∑

t=0

G(r∗t , γt)

∣
∣
∣
∣
ǫ̂−d, r−d

}

6 E

{ T∑

t=0

G(rcg

t , γt)

∣
∣
∣
∣
ǫ̂−d, r−d

}

. (2.17)
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Proof. For any t ∈ {0, . . . , T} and any realization of (ǫ̂t−d, rt−d), we can write

E{G(r∗t , γt) | ǫ̂t−d, rt−d} 6 max
rt∈R

E{G(rt, γt) | ǫ̂t−d, rt−d} (2.18)

= max
rt∈R

E
{
E{G(rt, γt) | ǫ̂t−d, rt−d, ǫt−d}

∣
∣ ǫ̂t−d, rt−d

}
(2.19)

6 E
{
max
rt∈R

E{G(rt, γt) | ǫ̂t−d, rt−d, ǫt−d}
∣
∣ ǫ̂t−d, rt−d

}
(2.20)

= E
{
max
rt∈R

E{G(rt, γt) | γt−d}
∣
∣ ǫ̂t−d, rt−d

}
(2.21)

= E{G(rcg

t , γt) | ǫ̂t−d, rt−d}, (2.22)

where (2.18) follows since r∗t is chosen to maximize the long term goodput—not the

instantaneous goodput; (2.20) follows since maxrt E{f(rt)} 6 E{maxrt f(rt)} for any

f(·); (2.21) follows by definition of degraded feedback; and (2.22) follows by definition

of the greedy genie. Taking the expectation over (ǫ̂t−d, rt−d), conditional on (ǫ̂−d, r−d),

we find

E{G(r∗t , γt) | ǫ̂−d, r−d} 6 E{G(rcg

t , γt) | ǫ̂−d, r−d}. (2.23)

Finally, summing both sides of (2.23) over t = {0, . . . , T} yields (2.17).

In Section 2.5 we study the greedy rate assignment scheme (2.10) in depth. Then,

in Section 2.6, we study (numerically) the particular case in which {ǫ̂t}t>0 is con-

structed from link-layer ACK/NAKs.

2.5 The Greedy Rate Adaptation Algorithm

In this section, we detail the implementation of greedy rate assignment (2.10)

assuming continuous Markov SNR variation and conditionally independent error-rate

estimates. In Section 2.5.1, we detail a procedure for packet-rate adaptation, while

in Section 2.5.2, we consider adapting the rate once per block of n packets.
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2.5.1 Packet-Rate Algorithm

Assuming a feedback delay of d > 1 packets, the greedy rate assignment (2.10)

can be rewritten as

r̂t = argmax
rt∈R

∫

G(rt, γt)p(γt | ǫ̂t−d, rt−d) dγt for t = 0, . . . , T . (2.24)

We now derive a recursive implementation of the greedy rate assignment (2.24).

Expanding the inferred SNR distribution via Bayes rule, we find

p(γt | ǫ̂t−d, rt−d)

=

∫

p(γt | γt−d, ǫ̂t−d, rt−d)p(γt−d | ǫ̂t−d, rt−d) dγt−d (2.25)

=

∫

p(γt | γt−d)p(γt−d | ǫ̂t−d, rt−d) dγt−d, (2.26)

where we used the assumption of Markov SNR variation to write (2.26). Furthermore,

p(γt−d | ǫ̂t−d, rt−d)

= p(γt−d | ǫ̂t−d, ǫ̂t−d−1, rt−d) (2.27)

=
p(ǫ̂t−d | γt−d, ǫ̂t−d−1, rt−d)p(γt−d | ǫ̂t−d−1, rt−d)

∫
p(ǫ̂t−d | γ′

t−d, ǫ̂t−d−1, rt−d)p(γ′
t−d | ǫ̂t−d−1, rt−d) dγ′

t−d

(2.28)

=
p(ǫ̂t−d | ǫ(rt−d, γt−d), ǫ̂t−d−1)p(γt−d | ǫ̂t−d−1, rt−d−1)

∫
p(ǫ̂t−d | ǫ(rt−d, γ′

t−d), ǫ̂t−d−1)p(γ′
t−d | ǫ̂t−d−1, rt−d−1) dγ′

t−d

. (2.29)

With conditionally independent error estimates (i.e., p(ǫ̂t | ǫt, ǫ̂t−1) = p(ǫ̂t | ǫt)), this

becomes

p(γt−d | ǫ̂t−d, rt−d)

=
p(ǫ̂t−d | ǫ(rt−d, γt−d))p(γt−d | ǫ̂t−d−1, rt−d−1)

∫
p(ǫ̂t−d | ǫ(rt−d, γ′

t−d))p(γ
′
t−d | ǫ̂t−d−1, rt−d−1) dγ′

t−d

. (2.30)
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Similar to (2.26), we can also write

p(γt−d+1 | ǫ̂t−d, rt−d)

=

∫

p(γt−d+1 | γt−d, ǫ̂t−d, rt−d)

× p(γt−d | ǫ̂t−d, rt−d) dγt−d (2.31)

=

∫

p(γt−d+1 | γt−d)p(γt−d | ǫ̂t−d, rt−d) dγt−d. (2.32)

Equations (2.26), (2.30), and (2.32) lead to the following recursive implementation of

the greedy rate assignment (2.24). Assuming the availability4 of p(γt−d | ǫ̂t−d−1, rt−d−1)

when calculating rt, the rate assignment procedure for packet indices t = 0, . . . , T is:

1. Measure ǫ̂t−d, compute p(ǫ̂t−d | ǫ(rt−d, γt−d)) as a function of γt−d, and then

calculate the distribution p(γt−d | ǫ̂t−d, rt−d) using (2.30).

2. Calculate p(γt | ǫ̂t−d, rt−d) using the Markov prediction step (2.26).

3. Calculate r̂t via (2.24).

4. If5 d > 1, then calculate p(γt−d+1 | ǫ̂t−d, rt−d) via (2.32) for use in the next

iteration.

2.5.2 Block-Rate Algorithm

Since it may be impractical for the transmitter to adapt the rate on a per-packet

basis, we now propose a modification of the algorithm detailed in Section 2.5.1 that

adapts the rate only once per block of n packets. The main idea behind our block-rate

algorithm is that the SNR {γt} and error-rate estimates {ǫ̂t} are treated as if they

4 For the initial packet indices t ∈ {0, . . . , d}, if the pdf p(γt−d | ǫ̂t−d−1, rt−d−1) is unknown, then
we suggest to use the prior p(γt−d) in its place.

5 Notice that, if d = 1, then p(γt−d+1 | ǫ̂t−d, rt−d) was already computed in step 2).
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were constant over the block, thereby allowing a straightforward application of the

method from Section 2.5.1. Though this treatment is suboptimal, our intention is to

trade performance for reduced complexity.

The details of our block-rate algorithm are now given. Denoting the block index

by i, the block versions of the degraded error-rate estimate and SNR are defined as

ǫ̂i ,
1

n

(i+1)n−1
∑

t=in

ǫ̂t (2.33)

γ
i

, γin+⌊n/2⌋, (2.34)

and the assigned rates {rt} are related to the calculated rates {ri} as

rt = r⌊t/n⌋. (2.35)

Notice that, when n = 1, the block-rate quantities reduce to the packet-rate quanti-

ties, i.e., ǫ̂i = ǫ̂i, γi
= γi, and ri = ri.

Borrowing the packet-rate adaptation approach from Section 2.5.1, the block-rate

greedy implementation goes as follows. Here, we use d to denote the delay in blocks.

Assuming the availability6 of p(γ
i−d
| ǫ̂i−d−1, ri−d−1) when calculating ri, the rate

assignment procedure for block indices i = 0, . . . , ⌈T/n⌉ is:

1. Measure {ǫ̂t}(i−d+1)n−1
t=(i−d)n , compute ǫ̂i−d via (2.33), compute p(ǫ̂i−d | ǫ(ri−d, γi−d

))

as a function of γ
i−d

, and then calculate the inferred SNR distribution p(γ
i−d
| ǫ̂i−d, ri−d)

using

p(γ
i−d
| ǫ̂i−d, ri−d)

=
p(ǫ̂i−d | ǫ(ri−d, γi−d

))p(γ
i−d
| ǫ̂i−d−1, ri−d−1)

∫
p(ǫ̂i−d | ǫ(ri−d, γ

′
i−d

))p(γ′
i−d
| ǫ̂i−d−1, ri−d−1) dγ

′
i−d

. (2.36)

6 For the initial block indices i ∈ {0, . . . , d}, if the pdf p(γ
i−d
| ǫ̂i−d−1, ri−d−1) is unknown, then

we suggest to use the prior p(γ
i−d

) in its place.
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2. Calculate p(γ
i
| ǫ̂i−d, ri−d) using the Markov prediction step

p(γ
i
| ǫ̂i−d, ri−d)

=

∫

p(γ
i
| γ

i−d
)p(γ

i−d
| ǫ̂i−d, ri−d) dγi−d

. (2.37)

3. Calculate r̂i via

r̂i = argmax
ri∈R

∫

G(ri, γi
)p(γ

i
| ǫ̂i−d, ri−d) dγi

. (2.38)

4. If7 d > 1, then calculate p(γ
i−d+1

| ǫ̂i−d, ri−d) as follows for use in the next

iteration.

p(γ
i−d+1

| ǫ̂i−d, ri−d)

=

∫

p(γ
i−d+1

| γ
i−d

)p(γ
i−d
| ǫ̂i−d, ri−d) dγi−d

. (2.39)

As the adaptation-block size n increases, we expect the packet error rate estimate

ǫ̂t to become more accurate (since it is estimated from, e.g., n ACK/NAKs), the SNR

model to get less accurate (since a block-fading approximation is being applied to a

process that is continuously fading), and the per-packet implementation complexity

of the algorithm to decrease.

We note that the block-rate modification proposed here is suboptimal in the sense

that the SNR of each packet in a block could have been predicted individually, rather

than predicting only the SNR of the packet in the middle of the block. Likewise,

individual rates could have been assigned for each packet in the block, rather than

a uniform rate for all packets in the block. However, joint optimization of intra-

block rates appears to be prohibitively complex and thus goes against our primary

motivation for the block-rate algorithm, i.e., simplicity.

7 Notice that, if d = 1, then p(γ
i−d+1

| ǫ̂i−d, ri−d) was already computed in step 2).
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Finally, we note that a similar block-rate modification can also be applied to the

causal genie scheme (2.16), which has been recognized as a non-degraded-feedback

version of the greedy scheme (2.10). However, doing so would spoil the total-goodput

optimality of the packet-rate causal genie that was identified in Lemma 1.

2.6 Numerical Results

We now describe the results of numerical experiments in which we assume uncoded

square-QAM modulation, a Gauss-Markov fading channel, and minimum variance

unbiased (MVU) estimation of the error-rate, as detailed below. While other examples

of modulation, error-rate estimation, and fading could have been employed, we feel

that our choices are sufficient to illustrate the essential behaviors of the generic rate

adaptation schemes discussed in Sections 2.4, 2.5.

2.6.1 Setup

For our numerical experiments, we used the uncoded QAMmodulation/demodulation

scheme described in Example 1, which yields the packet error-rate given in (2.3). We

used squared-integer constellation sizes, i.e., 4-QAM, 9-QAM, 16-QAM, etc. In addi-

tion, we used causal degraded error-rate feedback in the form of one ACK/NAK per

transmitted packet. Thus, in a block8 of n packets, there were n ACK/NAKs.

Given this setup, it can be shown that the MVU estimate [21] of the average

packet error rate over the i-th block can be computed by a simple arithmetic average

of the n ACK/NAKs, using 0 for an ACK and 1 for a NAK. Notice that this MVU

estimate corresponds exactly to the block error-rate estimate ǫ̂i specified in (2.33).

Furthermore, if ǫi denotes the value of the true packet error rate over the i-th block,

8 The results here also hold for packet-rate adaptation through the choice n = 1.
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then the number of NAKs per block is Binomial(n, ǫi) and the error estimate ǫ̂i obeys

p(ǫ̂i =
k
n
| ǫi) =

{(
n
k

)
ǫki (1− ǫi)

n−k for k = 0, . . . , n

0 else.
(2.40)

Thus, we can calculate ǫi = ǫ(ri, γi
) as a function of γ

i
using (2.3) and plug the results

into p(ǫ̂i | ǫi) from (2.40) in order to compute (2.36).

To generate the Markov block-rate SNR process {γ
i
}, we first generate a packet-

rate complex-valued Gauss-Markov “channel gain” [22] process {gt} using

gt = (1− α)gt−1 + αwt, (2.41)

where {wt} is a zero-mean unit-variance white circular Gaussian driving process and

0 ≤ α ≤ 1. Notice that α = 1 corresponds to i.i.d. gains, whereas α = 0 corresponds

to a time-invariant gain. We then generate a packet-rate SNR process {γt} by scaling

the squared magnitude of gt:

γt = K|gt|2. (2.42)

The scaling parameter K in (2.42) is essential because α affects both the (steady-

state) coherence time and the mean-squared value of the gain {gt}. Thus, by using

the two parameters K and α, it is possible to independently control the (steady-state)

mean and coherence time of the SNR process {γt}. In fact, it can be shown that, for

steady-state indices t, the SNR γt is exponentially distributed with mean value 2Kα
2−α

.

To evaluate p(γ
i
| γ

i−d
), we first notice from (2.34) that p(γ

i
|γ

i−d
) = p(γt | γt−nd).

Then, from (2.41), we find that

gt = (1− α)ndgt−nd + α
nd−1∑

j=0

(1− α)jwt−j, (2.43)
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where
∑nd−1

j=0 (1−α)jwt−j ∼ CN
(
0, 1

1−(1−α)2
(1− (1−α)2nd)

)
. From this fact, we show

in Appendix A that

p(γt | γt−nd) =
2− α

2Kα(1− (1− α)2nd)

× exp

(−(γt + (1− α)2ndγt−nd)(2− α)

2Kα(1− (1− α)2nd)

)

× Io

(
(1− α)nd

√
γtγt−nd(2− α)

Kα(1− (1− α)2nd)

)

. (2.44)

2.6.2 Results

Numerical experiments were conducted to investigate the steady-state perfor-

mance of the greedy algorithm from Section 2.5 relative to three reference schemes:

fixed rate, causal genie, and noncausal genie, both with and without finite-buffer con-

straints at the transmitter. The so-called fixed-rate reference scheme chooses the fixed

rate (i.e., constellation size) that maximizes expected goodput under the prior SNR

distribution, i.e., argmaxrt
∫
G(rt, γt)p(γt)dγt. In the absence of feedback, this fixed

rate would be optimal, i.e., total-goodput maximizing. The causal genie reference

scheme defined in Section 2.4 adapts the rate to maximize expected goodput under

perfect causal feedback of the error rate ǫt or, equivalently, the SNR γt. As shown in

Section 2.4, the goodput attained by the causal genie upper bounds that of optimal

rate selection under degraded feedback. However, as the feedback delay d and/or the

block size n increases, the causal genie’s ability to predict the SNR decreases, and

thus its goodput suffers. The so-called non-causal genie reference scheme assumes

perfect knowledge of SNR γt for all past, current, and future packets, and uses this

information to choose the goodput-maximizing rate. Since this scheme has access to
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more information than the causal-genie and greedy algorithms, it upper bounds them

in terms of goodput.

Infinite Buffer Experiments

For the first set of experiments, we assumed an infinitely back-logged queue at the

transmitter. Unless otherwise noted, the following parameters were used: block size

n = 1 packet, feedback delay d = 1 packet, mean SNR E{γt} = 25 dB, and fading-rate

parameter α = 0.001. For each channel realization, 200 packets (each consisting of p =

100 symbols) were transmitted. The steady-state goodputs reported (per symbol per

packet) in the figures were calculated by averaging instantaneous goodputs over the

packets in 1000 channel realizations for Figs. 2.3-2.4 and 500 channel realizations for

Figs. 2.5-2.6. To ensure that steady-state performance was reported, the algorithms

were initialized at the goodput-maximizing rate for each new channel realization.

Figure 2.3 plots steady-state goodput as a function of mean SNR E{γt}. To

vary E{γt}, we varied the parameter K while keeping α = 0.01. The plot shows

the greedy algorithm exhibits an increasing gain over the fixed-rate algorithm as

mean SNR increases. At low mean SNR, little gain is observed because the optimal

constellation size is almost always the smallest one, as can be inferred from Fig. 2.2.

But, at higher mean SNRs, the greedy algorithm performs about 1 dB worse (in

SNR) than the causal genie, whereas the fixed-rate scheme performs about 5 dB

worse. Furthermore, the SNR gap between the greedy and fixed-rate schemes grows

as mean SNR increases. Since the steady goodput achieved by the causal genie upper

bounds that achievable by any causal-feedback-based rate adaptation algorithm, one

can infer that greedy adaptation based on 1-bit ACK/NAK feedback is sufficient to

attain a major fraction of the gain achievable by any causal feedback scheme.
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Figure 2.3: Steady-state goodput versus mean SNR E{γt} for α = 0.01, block size
n = 1 packet, and delay d = 1 packet.

Figure 2.4 shows steady-state goodput versus fading-rate parameter α for mean

SNR E{γt} = 25 dB. Lower α corresponds to slower channel variation and thus

more accurate prediction of instantaneous SNR. From the plot, the following can be

observed: as α decreases, both the causal genie and the greedy algorithm approach

the non-causal genie, whereas as α increases, both the causal genie and the greedy

algorithm approach the fixed-rate algorithm. The non-causal genie and fixed-rate

algorithms yield essentially constant9 steady-state goodput versus α. For a wide

range of α, it can be seen that the greedy algorithm performs closer to the causal

genie than it does to the fixed-rate algorithm. Thus, we conclude that the greedy

scheme captures a dominant fraction (e.g., ≈ 90% at low α) of the goodput gain

achievable under causal feedback.

9 Deviations from constant are due to finite averaging effects.
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Figure 2.4: Steady-state goodput versus α for E{γt} = 25 dB, block size n = 1 packet,
and delay d = 1 packet.

Figure 2.5 plots steady-state goodput versus feedback delay d for packet-rate adap-

tation, i.e., n = 1. By definition, the non-causal genie has access to all past, current,

and future SNRs, so its performance is unaffected by delay. As for the causal ge-

nie and greedy algorithms, their steady-state goodputs measure 30% and 20% above

that of the fixed-rate algorithm, respectively, when d = 1. However, as the delay

d increases, their causally predicted SNR distributions converge to the prior SNR

distribution, so that, the causal genie and greedy algorithms eventually perform no

better than the fixed-rate algorithm. Still, for all delays, the simple greedy scheme

captures a dominant fraction of the goodput gain achievable under causal feedback.

Figure 2.6 plots steady-state goodput versus block size n packets for delay d = 1

packet and α = 0.001. For all tested block sizes, the greedy algorithm performs

closer to the causal genie than to the fixed-rate algorithm, implying that the greedy

28



10
0

10
1

10
2

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Delay

S
te

ad
y 

S
ta

te
 G

oo
dp

ut

 

 

Non Causal Genie
Causal Genie
Quantized Genie
Greedy Algorithm
Fixed−rate Alg

2 states

4 states

7 states

Figure 2.5: Steady-state goodput versus delay d for E{γt} = 25 dB, α = 0.001, and
block size n = 1 packet.

algorithm once again recovers a dominant portion of the goodput gain achievable

under the causal feedback constraint. The performances of all adaptive schemes

decrease with block size, though. This is for two reasons: first, a uniform rate is

applied across the block, whereas the optimal rate varies across the block; and, second,

as the block length increases, the SNR must be predicted farther into the future.

Notice that even the performance of non-causal genie degrades as n increases due to

the sub-optimality of its uniform rate assignment across the block.

Figures 2.5 and 2.6 also plot the performance of the so-called quantized genie

reference scheme, which adapts the rate to maximize goodput under quantized, but

otherwise perfect, knowledge of SNR γt−d. The goodput attained by the quantized
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Figure 2.6: Steady-state goodput versus block size n for E{γt} = 25 dB, α = 0.001,
and delay d = 1 packet.

genie upper bounds10 the goodput attained by a transmitter that assumes a finite-

state Markov SNR model and employs optimal POMDP-based rate assignment. To

construct the corresponding finite-state Markov model, we quantized the SNR using

the Lloyd-Max algorithm [23] and calculated the state transition probability matrix

via [24, eq. (15)-(16)]. Apart from the finite-state SNR model, rate assignment for

the quantized genie is identical to that for the causal genie.

Figures 2.5 and 2.6 show that the greedy algorithm outperforms the 2- and 4-state

quantized genies, and performs on par with the 7-state quantized genie, throughout

most of the examined range of d and n. Thus, we conclude that the greedy algo-

rithm outperforms the optimal POMDP-based rate adaptation scheme based on a

10 The fact that the quantized genie yields an upper bound in the case of a finite-state Markov
channel follows directly from Lemma 1, which holds for both continuous and finite-state Markov
channels.
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finite-state Markov SNR model with 7 states or less. This is notable because the

computational complexity of optimal POMDP-based rate adaptation is significant,

under typical horizons, for channel models with more than a few states.

Finite Buffer Experiments

For this second set of experiments, a finite data buffer was employed at the trans-

mitter. Bits are removed from the buffer when an ACK arrives, confirming their

successful transmission, or when the buffer overflows. The following parameters

were used: block size n = 1 packet, feedback delay d = 1 packet, and mean SNR

E{γt} = 25 dB. The packet arrival rate followed a 2-state Markov model with ON

and OFF states. In the ON state, a single packet arrives in the buffer (queue), and in

the OFF state, no packets arrive. The self transition probability in both ON and OFF

states was set to 0.9 in order to mimic bursty traffic. Consequently, the steady-state

probability of each state is 0.5 and the long-term arrival rate is 0.5 packets/interval.

The size of an arriving packet was set equal to the number of bits transmitted (per

packet interval) by the fixed-rate reference scheme under backlogged conditions. The

size of the buffer was set equal to 30 such packets of data. Thus, if packets were

arriving persistently, then, in the absence of NAKs, the fixed-rate scheme would yield

a fixed buffer occupancy, while, in the absence of ACKs, the buffer would go from to-

tally empty to totally full after 30 arrivals. For each channel realization, 1000 packets

were transmitted (each consisting of p = 100 symbols) and the buffer was initialized

at half-full. The values reported in the figures represent the average of all packets in

1000 channel realizations.

Figure 2.7 plots average buffer occupancy versus fading-rate parameter α, where

a buffer occupancy of “b” is to be interpreted as b arrival-packets worth of bits. It
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can be seen that the buffer occupancy achieved by the greedy algorithm is very close

to that achieved by the causal and non-causal genie algorithms, whereas the buffer

occupancy achieved by the fixed-rate scheme is much higher, especially at lower values

of α. Recall that, when α is low, the SNR can remain below average for prolonged

periods of time, during which fixed-rate transmissions are more likely to yield NAKs

and hence fill the buffer. Figure 2.8 plots a related statistic: the fraction of packets

that are dropped due to buffer overflows. Here again, the drop rate achieved by the

greedy algorithm is very close to that achieved by the causal and non-causal genie

algorithms, whereas the drop rate achieved by the fixed-rate algorithm is more than

10 times higher.
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Figure 2.7: Average buffer occupancy versus α for Markov arrivals with average rate
= 0.5 packets/interval, buffer size = 30 packets, E{γt} = 25 dB, block size n = 1
packet, and delay d = 1 packet.
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Figure 2.8: Average drop rate versus α for Markov arrivals with average rate = 0.5
packets/interval, buffer size = 30 packets, E{γt} = 25 dB, block size n = 1 packet,
and delay d = 1 packet.

Figure 2.9 shows steady-state goodput versus fading-rate parameter α for Markov

arrivals and finite buffer size. The steady-state goodput achieved by the greedy

scheme is very close to that of the causal and non-causal genie schemes, whereas

the steady-state goodput achieved by the fixed-rate scheme is much lower, especially

when α is small. The increase of steady-state goodput with α is directly related to

the decrease in drop rate with α observed in Fig. 2.8, since dropped packets do not

contribute to goodput.

2.7 Summary

In this chapter, we studied rate adaptation schemes that use degraded error-rate

feedback (e.g., packet-rate ACK/NAKs) to maximize finite-horizon expected goodput
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Figure 2.9: Steady-state goodput rate versus α for Markov arrivals with average rate
= 0.5 packets/interval, buffer size = 30 packets, E{γt} = 25 dB, block size n = 1
packet, and delay d = 1 packet.

over continuous Markov flat-fading wireless channels. First, we specified the POMDP

that leads to the optimal rate schedule and showed that its solution is computationally

impractical. Then, we proposed a simple greedy alternative and showed that, while

generally suboptimal, the greedy approach is optimal when the error-rate feedback

is non-degraded. We then detailed an implementation of the greedy rate-adaptation

scheme in which the SNR distribution is estimated online (from degraded error-rate

feedback) and combined with offline-calculated goodput-versus-SNR curves to find

the expected-goodput maximizing transmission rate. In addition to the packet-rate

greedy adaptation scheme, a block-rate greedy adaptation scheme was also proposed

that offers the potential for significant reduction in complexity with only moderate

sacrifice in performance.
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For the particular case of uncoded square-QAM transmission, packet-rate ACK/NAK

feedback, and Rayleigh fading, the greedy scheme was numerically compared to three

reference schemes: the optimal fixed-rate scheme, a genie-aided scheme with per-

fect causal SNR knowledge, and a genie-aided scheme with perfect non-causal SNR

knowledge. First, the effects of mean SNR, channel fading rate, and feedback delay

on steady-state goodput were investigated in the context of an infinitely backlogged

transmission queue. In this case, the causal genie reference is especially meaningful

because it upper bounds the performance of the optimal POMDP scheme, which is too

complex to implement directly. Second, a finite transmission buffer was considered,

and the effects of channel fading rate on buffer occupancy, drop rate, and steady-state

goodput were investigated. The results suggest that the simple packet-rate greedy

scheme captures a dominant fraction of the achievable goodput under causal feed-

back, whereas the optimal fixed-rate scheme captures significantly less. Similarly,

the drop rate and average buffer occupancy of the greedy scheme were nearly equal

to those of the causal and non-causal genie-aided schemes, whereas the drop rate

and average buffer occupancy of the fixed-rate scheme were much higher (e.g., an

order-of-magnitude higher in the case of drop rate). Comparisons to a “quantized

genie” scheme that upper bounds optimal adaptation under a finite-state Markov

SNR model were also made, and there it was found that the proposed greedy scheme

outperformed the quantized genie scheme with up to 7 states. Since POMDP-based

optimal rate-adaptation for discrete-Markov channels with 7 or more states would

be computationally intensive, greedy rate-adaptation based on a continous-Markov

channel model is more appealing.
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Chapter 3: Joint Scheduling and Resource Allocation in the
OFDMA Downlink under Imperfect Channel-State

Information

3.1 Introduction

In the downlink of a wireless orthogonal frequency division multiple access (OFDMA)

system, the base station (BS) delivers data to a pool of users whose channels vary

in both time and frequency. Since bandwidth and power resources are limited, the

BS would like to allocate them most effectively, e.g., by pairing users with strong

subchannels and distributing power in the best possible manner. At the same time,

the BS may need to maintain per-user quality-of-service (QoS) constraints, such as

a minimum reliable rate for each user. Overall, the BS faces a resource allocation

problem where the goal is to maximize an efficiency-related quantity (e.g., a function

of goodput) under particular (e.g., power) constraints [25]. Although, for resource al-

location, one would ideally like to have access to instantaneous channel state informa-

tion (CSI), such CSI is difficult to obtain in practice, and so resource allocation must

be accomplished under imperfect CSI. Thus, in this chapter, we consider simultaneous

user-scheduling, power-allocation, and rate-selection in an OFDMA downlink, given

only a generic distribution for the subchannel signal-to-noise ratios (SNRs), with the

goal of maximizing expected sum-utility under a sum-power constraint. In doing so,
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we consider relatively generic goodput-based utilities, facilitating, e.g., throughput-

based pricing (e.g., [26–28]), quality-of-service enforcement, and/or the treatment of

practical modulation-and-coding schemes (MCS).

In particular, we consider the above scheduling and resource allocation (SRA)

problem under two scenarios. In the first scenario, we allow multiple users (and/or

MCSs) to time-share any given subchannel and time-slot. In practice, this scenario

occurs, e.g., in OFDMA systems where several users are multiplexed within a time-

slot, such as IEEE 802.16/WiMAX [29] and 3GPP LTE [30]. Although the resulting

optimization problem is non-convex, we show that it can be converted into a con-

vex problem and solved exactly using a dual optimization approach. Based on a

detailed analysis of the optimal solution, we propose a novel bisection-based algo-

rithm that is faster than state-of-the-art golden-section based approaches (e.g., [31])

and that admits finite-iteration performance guarantees. In the second scenario, we

allow at most one combination of user and MCS to be used on any given subchan-

nel and time-slot. This scenario occurs widely in practice, such as in the Dedicated

Traffic Channel (DTCH) mode of UMTS-LTE [32], and results in a mixed-integer

optimization problem. Based on a detailed analysis of the optimal solution to this

problem and its relationship to that in the first scenario, we propose a novel sub-

optimal algorithm that is faster than state-of-the-art golden-section and subgradient

based approaches (e.g., [31, 33]), and we derive a novel tight bound on the optimal-

ity gap of our algorithm. Finally, we simulate our algorithms under various OFDMA

system configurations, comparing against state-of-the-art approaches and genie-aided

performance bounds.
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The remainder of this chapter is organized as follows. In Section 3.2, we discuss

some past work that is related to our problem. In Section 3.3, we outline the system

model and frame our optimization problems. In Section 3.4, we consider the “con-

tinuous” problem, where each subchannel can be shared by multiple users and rates,

and find its exact solution. In Section 3.5, we consider the “discrete” problem, where

each subchannel can support at most one combination of user and rate per time slot.

In Section 3.6, we compare the performance of the proposed algorithms to reference

algorithms under various settings. Finally, in Section 3.7, we conclude.

3.2 Past Work

The problem of OFDMA downlink SRA under perfect CSI has been studied in

several papers, notably [34–39]. In [34], a utility maximization framework for dis-

crete allocation was formulated to balance system efficiency and fairness, and efficient

subgradient-based algorithms were proposed. In [35], a subchannel, rate, and power

allocation algorithm was developed to minimize power consumption while maintain-

ing a total rate-allocation requirement for every user. In [38], a weighted-sum ca-

pacity maximization problem with/without subchannel sharing was formulated to

allocate subcarriers and powers. In [39], non-convex optimization problems regarding

weighted sum-rate maximization and weighted sum-power minimization were solved

using a Lagrange dual decomposition method. Compared to the above works, we

extend the utility maximization framework to imperfect CSI and continuous alloca-

tions, and propose bisection-based algorithms that are faster for both the discrete

and continuous allocation scenarios. Unlike [34–39], our utility framework can be
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applied to problems with/without fixed rate-power functions11. In additional, it can

be applied to pricing-based utilities (e.g., responsive pricing and proportional fair-

ness pricing) [26]. Furthermore, we study the relationship between the discrete and

continuous allocation scenarios, and provide a tight bound on the duality gap of our

proposed discrete-allocation scheme.

The problem of OFDMA downlink SRA under imperfect CSI was studied in several

papers, notably [31,33,40,41]. In [33], the authors considered the problem of discrete

ergodic weighted sum-rate maximization for user scheduling and resource allocation,

and studied the impact of channel estimation error due to pilot-aided MMSE chan-

nel estimation. In [31], a deterministic optimization problem was formulated using

an upper bound on system capacity (via Jensen’s inequality) as the objective. Both

optimal and heuristic algorithms were then proposed to implement the obtained so-

lution. Compared to these two works, we propose faster algorithms, applicable to a

general utility maximization framework (of which the objectives in [31,33] are special

cases), under a more general class of channel estimators, and for both discrete and

continuous subchannel allocations. Our algorithms are inspired by a rigorous analysis

of the optimal solutions to the discrete and continuous problems. In [40], the prob-

lem of total transmit power minimization, subject to strict constraints on conditional

expected user capacities, was investigated. In [41], the effect of heterogeneous delay

requirements and outdated CSI on a particular discrete resource allocation problem

was studied. In contrast, we consider a general utility maximization problem that

allows us to attack problems that may or may not be based on fixed rate-power func-

tions, as well as those based on pricing models. Relative to these works, we propose

11By a “fixed rate-power function” we mean that, for a given SNR, the achievable rate is a known
function of the power.
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faster algorithms for both continuous and discrete allocation problems with provable

bounds on their performances.

3.3 System Model

Consider a downlink OFDMA system with N subchannels and K active users

(N,K ∈ Z+) as shown in Fig. 3.1. The scheduler-and-resource-allocator at the base-

station uses the imperfect CSI to send data to the users, across OFDMA subchannels,

in a way that maximizes utility. We assume that, for each user, there is an infinite

backlog of data at the base-station, so that there is always data available to be

transmitted. During every channel use and across every OFDMA subchannel, the

base-station transmits codeword(s) from a generic signaling scheme, which propagate

to the intended mobile recipient(s) through their respective fading channels. For a

given user k, the OFDMA subchannels are assumed to be non-interfering, with gains

that are time-invariant over each codeword duration and statistically independent

of those for other users. Thus, the successful reception of a transmitted codeword

depends on the corresponding subchannel’s SNR γ, power p, and modulation and

coding scheme (MCS), indexed by m ∈ {1, . . . ,M}. We assume that, for user k,

MCS m corresponds to a transmission rate of rk,m bits per codeword and a codeword

error probability of ǫk,m(pγ) = ak,me
−bk,mpγ for known constants ak,m and bk,m (see,

e.g., [33]). Here, the subchannel SNR γ is treated as an exogenous parameter, so that

pγ is the effective received SNR.

To precisely state our scheduling and resource allocation (SRA) problem, some

additional notation is useful. To indicate how subchannels are partitioned among

users and rates in each time-slot, we will use the proportionality indicator In,k,m,

40



Partial CSI

user
messages

scheduler
and

resource
allocator

n = 1

n = 1

n = 1

n = N

n = N

n = N

...

...

...

...

user 1

user 2

user K

Base Station

Figure 3.1: System model of a downlink OFDMA system with N subchannels and K
users. Here, n is the subchannel index.

where In,k,m = 1 means that subchannel n is fully dedicated to user k at MCS m,

and In,k,m = 0 means that subchannel n is totally unavailable to user k at MCS m.

The subchannel resource constraint is then expressed as
∑

k,m In,k,m ≤ 1 for all n. In

the sequel, we consider two flavors of the SRA problem, a “continuous” one where

each subchannel can be shared among multiple users and/or rates per time slot (i.e.,

In,k,m ∈ [0, 1]), and a “discrete” one where each subchannel can be allocated to at most

one user/rate combination per time slot (i.e., In,k,m ∈ {0, 1}). We will use pn,k,m ≥ 0

as the power that would be expended on subchannel n if it was fully allocated to

the user/rate combination (k,m). With this definition, the total expended power

becomes
∑

n,k,m In,k,mpn,k,m. Finally, we will use γn,k to denote the nth subchannel’s

SNR for user k. Although we assume that the BS does not know the SNR realizations

{γn,k}, we assume that it does know the (marginal) distribution of each γn,k.

When subchannel n is fully dedicated to user k with MCS m and power pn,k,m,

the goodput gn,k,m = (1 − ak,me
−bk,mpn,k,mγn,k)rk,m quantifies the expected number of
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bits, per codeword, transmitted without error. In the sequel, we focus on maximiz-

ing goodput-based utilities of the form Un,k,m(gn,k,m), where Un,k,m(·) is any generic

real-valued function that is twice differentiable, strictly-increasing, and concave, with

Un,k,m(0) < ∞. (These conditions imply U ′
n,k,m(·) > 0 and U ′′

n,k,m(·) ≤ 0.) In partic-

ular, we aim to maximize the expected sum utility, E
{∑

n,k,m In,k,mUn,k,m(gn,k,m)
}
,

where the expectation is taken over the subchannel-SNRs {γn,k} hidden within the

goodputs. Incorporating a sum-power constraint of Pcon, our SRA problem becomes

SRA , max
{pn,k,m≥0}
{In,k,m}

E

{
N∑

n=1

K∑

k=1

M∑

m=1

In,k,mUn,k,m

(
(1− ak,me

−bk,mpn,k,mγn,k)rk,m
)

}

s.t.
∑

k,m

In,k,m ≤ 1 ∀n and
∑

n,k,m

In,k,mpn,k,m ≤ Pcon. (3.1)

The above formulation is sufficiently general to address a wide class of objectives.

For example, to maximize sum-goodput, one would simply use Un,k,m(g) = g. For

weighted sum-goodput, one would instead choose Un,k,m(g) = wkg with appropri-

ately chosen weights {wk}. To maximize weighted sum capacity
∑

n,k wkIn,k,1 log
(
1+

pn,k,1γn,k
)
, as in [33], one would choose M = ak,1 = bk,1 = rk,1 = 1, and set

Un,k,1(g) = wk log
(
1− log(1− g)

)
for g ∈ [0, 1). Commonly used utilities constructed

from concave functions of capacity log(1 + pn,k,1γn,k), such as max-min fairness and

the utilities in [34] and [31], can also be handled by our formulation. For example,

the utility Un,k,m(g) = 1− e−wkg (for some positive {wk}) is appropriate for “elastic”

applications such as file transfer [27,28]. Our formulation also supports various pric-

ing models [26], such as flat-pricing, responsive pricing, proportional fairness pricing,

and effective-bandwidth pricing.

Next, in Section 3.4, we study the SRA problem for the continuous case In,k,m ∈

[0, 1], and in Section 3.5 we study it for the discrete case In,k,m ∈ {0, 1}.
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3.4 Optimal Scheduling and Resource Allocation with sub-
channel sharing

In this section, we address the SRA problem in the case where In,k,m ∈ [0, 1] ∀(n, k,m).

Recall that this problem arises when sharing of any subchannel by multiple users

and/or multiple MCS combinations is allowed. We refer to this problem as the

“continuous scheduling and resource allocation” (CSRA) problem. Defining I as the

N ×K ×M matrix with (n, k,m)th element as In,k,m and the domain of I as

ICSRA :=
{
I : I ∈ [0, 1]N×K×M ,

∑

k,m In,k,m ≤ 1 ∀n
}
,

the CSRA problem can be stated as

CSRA := min
{pn,k,m≥0}
I∈ICSRA

−
∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ak,me

−bk,mpn,k,mγn,k)rk,m
)}

s.t.
∑

n,k,m

In,k,m pn,k,m ≤ Pcon.
(3.2)

This problem has a non-convex constraint set, making it a non-convex optimization

problem. In order to convert it into a convex optimization problem, we write the

“actual” power allocated to user k at MCSm on subchannel n as xn,k,m = In,k,m pn,k,m.

Then, the problem becomes

CSRA = min
{xn,k,m≥0}
I∈ICSRA

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) s.t.
∑

n,k,m

xn,k,m ≤ Pcon,(3.3)

where Fn,k,m(·, ·) is given by

Fn,k,m(In,k,m, xn,k,m) =

{

−E
{

Un,k,m

(
(1− ak,me

−bk,mxn,k,mγn,k/In,k,m)rk,m
)}

if In,k,m 6= 0

0 otherwise.
(3.4)

The modified problem in (3.3) is a convex optimization problem with a convex objec-

tive function and linear inequality constraint. Moreover, Slater’s condition is satisfied
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at In,k,m = 1
2KM

and xn,k,m = Pcon

N
In,k,m, ∀n, k,m. Hence, the solution of (3.3) is the

same as that of its dual problem (i.e., zero duality gap) [42]. Let us denote the optimal

I and x for (3.3) by I∗CSRA and x∗
CSRA, respectively, and let p∗

CSRA be the corresponding

p.

Writing the dual formulation, using µ as the dual variable, the Lagrangian of (3.3)

is

L(µ, I,x) =
∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) +
( ∑

n,k,m

xn,k,m − Pcon

)

µ, (3.5)

where we use x to denote the N ×K ×M matrix [xn,k,m]. The corresponding uncon-

strained dual problem, then, becomes

max
µ≥0

min
x�0

I∈ICSRA

L(µ, I,x) = max
µ≥0

min
I∈ICSRA

L(µ, I,x∗(µ, I))

= max
µ≥0

L(µ, I∗(µ),x∗(µ, I∗(µ)))

= L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))), (3.6)

where x � 0 means that xn,k,m ≥ 0 ∀n, k,m, x∗(µ, I) denotes the optimal x for a

given µ and I, I∗(µ) ∈ ICSRA denotes the optimal I for a given µ, and µ∗ denotes the

optimal µ.

In the next few subsections, we will optimize the Lagrangian according to (3.6)

w.r.t. x, I, and µ in Section 3.4.1, Section 3.4.2, and Section 3.4.3, respectively. We

then propose an iterative algorithm to solve CSRA problem in Section 3.4.4. Finally,

we discuss some important properties of the CSRA solution in Section 3.4.5.

3.4.1 Optimizing over total powers, x, for a given µ and user-
MCS allocation matrix I

The Lagrangian in (3.5) is a convex function of x. Therefore, any local minimum

of the function is a global minimum. Calculating the derivative of L(µ, I,x) w.r.t.
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xn,k,m, we get

∂L(µ, I,x)

∂xn,k,m
(3.7)

=







µ if In,k,m = 0

µ− ak,mbk,mrk,mE
{

U ′
n,k,m

(
(1− ak,me

−bk,mxn,k,mγn,k/In,k,m)

× rk,m
)
γn,ke

−bk,mxn,k,mγn,k/In,k,m

} otherwise.

Clearly, if In,k,m = 0, then L(·, ·, ·) is an increasing12 function of xn,k,m since µ ≥ 0.

Therefore, x∗
n,k,m(µ, I) = 0. But if In,k,m 6= 0, then ∂L(µ,I,x)

∂xn,k,m
is an increasing function

of xn,k,m since U ′
n,k,m(·) is a decreasing function of xn,k,m. Thus, we have

µ− ak,mbk,mrk,mE
{

U ′
n,k,m

(
(1− ak,me

−bk,mxn,k,mγn,k/In,k,m)rk,m
)

×γn,ke−bk,mxn,k,mγn,k/In,k,m

}

= 0 (3.8)

for some positive xn,k,m if and only if 0 ≤ µ ≤ ak,mbk,mrk,mU
′
n,k,m

(
(1−ak,m)rk,m

)
E{γn,k}.

Therefore,

x∗
n,k,m(µ, I) =

{

x̃n,k,m(µ, I) if 0 ≤ µ ≤ ak,mbk,mrk,mU
′
n,k,m

(
(1− ak,m)rk,m

)
E{γn,k}

0 otherwise,

(3.9)

where x̃n,k,m(µ, I) satisfies

µ = ak,mbk,mrk,mE
{
U ′
n,k,m

(
(1− ak,me

−bk,mx̃n,k,m(µ,I)γn,k/In,k,m)rk,m
)

×γn,ke−bk,mx̃n,k,m(µ,I)γn,k/In,k,m
}
. (3.10)

From (3.10), we observe that x̃n,k,m(µ, I) = p̃n,k,m(µ)In,k,m, where p̃n,k,m(µ) satisfies

µ = ak,mbk,mrk,m E
{
U ′
n,k,m

(
(1− ak,me

−bk,mp̃n,k,m(µ)γn,k)rk,m
)

×γn,ke−bk,mp̃n,k,m(µ)γn,k
}
. (3.11)

12We use the terms “increasing” and “decreasing” interchangeably with “non-decreasing” and
“non-increasing”, respectively. The terms “strictly-increasing” and “strictly-decreasing” are used
when appropriate.
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Combining the above observations, we can write for any I ∈ ICSRA and (n, k,m)

that

x∗
n,k,m(µ, I) = In,k,m p∗n,k,m(µ), (3.12)

where

p∗n,k,m(µ) =

{

p̃n,k,m(µ) if 0 ≤ µ ≤ ak,mbk,mrk,mU
′
n,k,m

(
(1− ak,m)rk,m

)
E{γn,k}

0 otherwise,

(3.13)

and p̃n,k,m(µ) satisfies (3.11). Note that if such a p̃n,k,m(µ) exists that satisfies (3.11),

then it is unique. This is because, in (3.11), U ′
n,k,m(·) is a continuous decreasing

positive function and e−bk,mp̃n,k,m(µ)γn,k is a strictly-decreasing continuous function of

p̃n,k,m(µ), which makes the right side of (3.11) a strictly-decreasing continuous func-

tion of p̃n,k,m(µ). Therefore, in the domain of its existence, p̃n,k,m(µ) is unique and

decreases continuously with increase in µ. Consequently, x∗
n,k,m(µ, I) is a decreasing

continuous function of µ. Figure 3.2 shows an example of the variation of p∗n,k,m(µ)

w.r.t. µ.

3.4.2 Optimizing over user-MCS allocation matrix I for a

given µ

Substituting x∗(µ, I) from (3.12) into (3.5), we get the Lagrangian

L(µ, I,x∗(µ, I)) (3.14)

= −µPcon +
∑

n

∑

k,m

In,k,m

[
Vn,k,m(µ,p∗n,k,m(µ))

︷ ︸︸ ︷

−E
{

Un,k,m

(
(1− ak,me

−bk,mp∗n,k,m(µ)γn,k)rk,m
)}

+ µp∗n,k,m(µ)

]

︸ ︷︷ ︸

Ln(µ,In)

,

where In = {In,k,m ∀(k,m)}. Since the above Lagrangian contains the sum of

Ln(µ, In) over n, minimizing Ln(µ, In) for every n (over all possible In) minimizes

the Lagrangian. Recall that Ln(µ, In) is a linear function of {In,k,m ∀(k,m)} that
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Figure 3.2: Prototypical plot of p∗n,k,m(µ) as a function of µ. The choice of system
parameters are the same as those used in Section 3.6.

satisfies
∑

k,m In,k,m ≤ 1. Therefore, Ln(µ, In) is minimized by the In that gives

maximum possible weight to the (k,m) combination with the most negative value

of Vn,k,m(µ, p
∗
n,k,m(µ)). To write this mathematically, let us define, for each µ and

subchannel n, a set of participating user-MCS combinations that yield the same

most-negative value of Vn,k,m(µ, p
∗
n,k,m(µ)) over all (k,m) as follows:

Sn(µ) (3.15)

,
{

(k,m) : (k,m) = argmin
(k′,m′)

Vn,k′,m′(µ, p∗n,k′,m′(µ)), and Vn,k,m(µ, p
∗
n,k,m(µ)) ≤ 0

}

.

If Sn(µ) is a null or a singleton set, then the optimal allocation on subchannel n is

given by

I∗n,k,m(µ) =

{

1 if (k,m) ∈ Sn(µ)

0 otherwise.
(3.16)
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However, if |Sn(µ)| > 1 (where |Sn(µ)| denotes the cardinality of Sn(µ)), then mul-

tiple (k,m) combinations contribute equally towards the minimum value of Ln(µ, I),

and thus the optimum can be reached by sharing subchannel n. In particular, let

us suppose that Sn(µ) = {
(
k1(n), m1(n)), . . . , (k|Sn(µ)|(n), m|Sn(µ)|(n)

)
}. Then, the

optimal allocation of subchannel n is given by

I∗n,k,m(µ) =

{

In,ki(n),mi(n) if (k,m) = (ki(n), mi(n)) for some i ∈ {1, . . . , |Sn(µ)|}
0 otherwise,

(3.17)

where the vector (In,k1(n),m1(n), . . . , In,k|Sn(µ)|(n),m|Sn(µ)|(n)) is any point in the unit-

(|Sn(µ)| − 1) simplex, i.e., it belongs to the space [0, 1]|Sn(µ)| and satisfies

|Sn(µ)|∑

i=1

In,ki(n),mi(n) = 1. (3.18)

3.4.3 Optimizing over µ

In order to optimize over µ, we can calculate the Lagrangian optimized for a given

value of µ as

L(µ, I∗(µ),x∗(µ, I∗(µ)))

=
∑

n,k,m

I∗n,k,m(µ)

[

− E
{

Un,k,m

(
(1− ak,me

−bk,mp∗n,k,m(µ)γn,k)rk,m
)}

+ µp∗n,k,m(µ)

]

− µPcon, (3.19)

and then maximize it over all possible values of µ ≥ 0 to find µ∗. Notice from (3.16)-

(3.18) that we have
∑

k,m I∗n,k,m(µ
∗) = 1 for at least one n. Otherwise, I∗(µ∗) = 0

which, clearly, is not the optimal solution. Therefore, µ∗ ≥ µmin > 0, where

µmin = min
n,k,m

ak,mbk,mrk,mE
{
U ′
n,k,m

(
(1− ak,me

−bk,mPconγn,k)rk,m
)
γn,ke

−bk,mPconγn,k
}

(3.20)
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is obtained by taking p̃n,k,m(µ) → Pcon for all (n, k,m) in the right side of (3.11).

Since p∗n,k,m(µ) is a decreasing continuous function of µ (seen in Section 3.4.1), we

have
∑

n,k,m x∗
n,k,m(µ, I) > Pcon for all I 6= 0 and µ < µmin. We can also obtain an

upper bound µ∗ ≤ µmax, where

µmax = max
n,k,m

ak,mbk,mrk,mU
′
n,k,m

(
(1− ak,m)rk,m

)
E{γn,k} (3.21)

is obtained by taking p̃n,k,m(µ) → 0 in the right side of (3.11). Thus, for any µ >

µmax, we have that x∗
n,k,m(µ, I) = 0 ∀n, k,m, I. Since the primal objective in (3.3) is

certainly not maximized when zero power is allocated on all subchannels, we have

µ∗ ∈ [µmin, µmax] ⊂ (0,∞).

At the optimal µ, i.e., µ∗, if we have |Sn(µ
∗)| ≤ 1 ∀n, then the optimal CSRA

allocation, I∗CSRA, equals I∗(µ∗) and can be calculated using (3.16). Moreover, the

optimal power allocation p∗
CSRA allocates

p∗n,k,m,CSRA =

{

p∗n,k,m(µ
∗) if I∗n,k,m(µ

∗) 6= 0

0 otherwise
(3.22)

to every possible (n, k,m) combination. However, if for some n, we have |Sn(µ
∗)| > 1,

then ambiguity arises due to multiple possibilities of I∗(µ∗) obtained via (3.17). In

order to find the optimal user-MCS allocation in such cases, we use the fact that

the CSRA problem in (3.3) is a convex optimization problem whose exact solution

satisfies the sum-power constraint with equality, i.e.,

∑

n,k,m

x∗
n,k,m(µ

∗, I∗(µ∗)) =
∑

n,k,m

I∗n,k,m(µ
∗)p∗n,k,m(µ

∗) = Pcon. (3.23)

This is because µ∗ ≥ µmin > 0 (shown earlier) and the complementary slackness con-

dition gives that µ∗(∑
n,k,m x∗

n,k,m(µ
∗, I∗(µ∗))− Pcon

)
= 0. Now, recall that the total

power allocated to any subchannel n at µ∗ is
∑|Sn(µ∗)|

i=1 In,ki(n),mi(n) p
∗
n,ki(n),mi(n)

(µ∗)
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where {In,ki(n),mi(n)}|Sn(µ∗)|
i=1 satisfies (3.18). This quantity is dependent on the choice

of values for {In,ki(n),mi(n)}|Sn(µ∗)|
i=1 and takes on any value between an upper and lower

bound given by the following equation:

min
i

p∗n,ki(n),mi(n)
(µ∗) ≤

|Sn(µ∗)|
∑

i=1

In,ki(n),mi(n) p
∗
n,ki(n),mi(n)

(µ∗) ≤ max
i

p∗n,ki(n),mi(n)
(µ∗).

(3.24)

Note that the existence of at least one I = I∗(µ∗) satisfying

∑

n

∑

i

In,ki(n),mi(n) p
∗
n,ki(n),mi(n)

(µ∗) = Pcon (3.25)

is guaranteed by the optimality of the dual solution (of our convex CSRA problem over

a closed constraint set). Therefore, we necessarily have
∑

nmini p
∗
n,ki(n),mi(n)

(µ∗) ≤

Pcon, and
∑

n maxi p
∗
n,ki(n),mi(n)

(µ∗) ≥ Pcon. In addition, all choices of user-MCS allo-

cations, I∗(µ∗), given by (3.17) that satisfy the equality
∑

n,k,m I∗n,k,m(µ
∗) p∗n,k,m(µ

∗) =

Pcon, are optimal for the CSRA problem.

In the case that the optimal solution I∗(µ∗) is non-unique, i.e., |Sn(µ
∗)| > 1 for

some n, then one instance of I∗(µ∗) can be found as follows. For each subchannel n,

define

(kmax(n, µ
∗), mmax(n, µ

∗)) := argmax
i

p∗n,ki(n),mi(n)
(µ∗), (3.26)

(kmin(n, µ
∗), mmin(n, µ

∗)) := argmin
i

p∗n,ki(n),mi(n)
(µ∗), (3.27)

and find the value of λ ∈ [0, 1] for which

λ
(∑

n

pn,kmin(n,µ∗),mmin(n,µ∗)(µ
∗)
)

+ (1− λ)
(∑

n

pn,kmax(n,µ∗),mmax(n,µ∗)(µ
∗)
)

= Pcon,

(3.28)

i.e.,

λ =

∑

n pn,kmax(n,µ∗),mmax(n,µ∗)(µ
∗)− Pcon

∑

n pn,kmax(n,µ∗),mmax(n,µ∗)(µ∗)−∑n pn,kmin(n,µ∗),mmin(n,µ∗)(µ∗)
. (3.29)
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Now, defining two specific allocations, Imin(µ∗) and Imax(µ∗), as

Imin

n,k,m(µ
∗) =

{

1 (k,m) = (kmin(n, µ
∗),mmin(n, µ

∗))

0 otherwise,
and

Imax

n,k,m(µ
∗) =

{

1 (k,m) = (kmax(n, µ
∗),mmax(n, µ

∗))

0 otherwise, (3.30)

respectively, the optimal user-MCS allocation is given by I∗CSRA = λImin(µ∗) + (1 −

λ)Imax(µ∗). The corresponding optimal power allocation is then given by (3.22). It

can be seen that this solution satisfies the subchannel constraint as well as the sum

power constraint with equality, i.e.,

∑

n,k,m

I∗n,k,m(µ
∗)p∗n,k,m(µ

∗) =
∑

n,k,m

x∗
n,k,m(µ

∗, I∗(µ∗)) = Pcon.

Two interesting observations can be made from the above discussion. Firstly, for

any choice of concave utility functions Un,k,m(·), there exists an optimal scheduling

and resource allocation strategy that allocates each subchannel to at most 2 user-

MCS combinations. Therefore, when allocating N subchannels, even if more than

2N user-MCS options are available, at most 2N such options will be used. Secondly,

if Imin(µ∗) = Imax(µ∗), then the exact CSRA solution allocates power to at most one

(k,m) combination for every subchannel, i.e., no subchannel is shared among any two

or more user-MCS combinations. This observation will motivate the SRA problem’s

solution without subchannel sharing in Section 3.5.

3.4.4 Algorithmic implementation

In practice, it is not possible to search exhaustively over µ ∈ [µmin, µmax]. Thus,

we propose an algorithm to reach solutions in close (and adjustable) proximity to
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the optimal. The algorithm first narrows down the location of µ∗ using a bisection-

search over [µmin, µmax] for the optimum total power allocation, and then finds a set

of resource allocations (I,x) that achieve a total utility close to the optimal.

To proceed in this direction, with the aim of developing a framework to do

bisection-search over µ, let us define the total optimal allocated power for a given

value of µ as follows:

X∗
tot(µ) ,

∑

n,k,m

x∗
n,k,m(µ, I

∗(µ)), (3.31)

where I∗(µ) and x∗(µ, I∗(µ)) (defined in (3.6)) minimize the Lagrangian (defined in

(3.5)) for a given µ. The following lemma relates the variation of X∗
tot(µ) with respect

to µ.

Lemma 2. The total optimal power allocation, X∗
tot(µ), is a monotonically decreasing

function of µ.

Proof. Proof is given in Appendix B.2.

A sample plot of X∗
tot(µ) and L(µ, I∗(µ),x∗(µ, I∗(µ))) as a function of µ is shown

in Figure 3.3. From the figure, three observations can be made. First, as µ increases,

the optimal total allocated power decreases, as expected from Lemma 2. Second, as

expected, the Lagrangian is maximized for that value of µ at which X∗
tot(µ) = Pcon.

Third, the optimal total power allocation varies continuously in the region of µ where

the optimal allocation, I∗(µ), remains constant and takes a jump (negative) when

I∗(µ) changes. This happens for the following reason. We know, for any (n, k,m), that

p∗n,k,m(µ) is a continuous function of µ. Thus, when the optimal allocation remains

constant over a range of µ, the total power allocated,
∑

n,k,m I∗n,k,m(µ)p
∗
n,k,m(µ) also

varies continuously with µ. However, at the point of discontinuity (say µ̃), multiple

optimal allocations achieve the same optimal value of Lagrangian. In other words,
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|Sn(µ̃)| > 1 for some n. In that case, X∗
tot(µ̃) can take any value in the interval

[
∑

n p
∗
n,kmin(n),mmin(n)

(µ̃),
∑

n p
∗
n,kmax(n),mmax(n)

(µ̃)
]

while achieving the same minimum value of the Lagrangian at µ̃. Applying Lemma 2,

we have

X∗
tot(µ̃−∆1) ≥

∑

n

p∗n,kmax(n),mmax(n)(µ̃) ≥ X∗
tot(µ̃) ≥

∑

n

p∗n,kmin(n),mmin(n)
(µ̃) ≥ X∗

tot(µ̃+∆2)

for any ∆1,∆2 > 0, causing a jump of
(∑

n p
∗
n,kmin(n),mmin(n)

(µ̃)−∑n p
∗
n,kmax(n),mmax(n)

(µ̃)
)

in the total optimal power allocation at µ̃.
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Figure 3.3: Prototypical plot of X∗
tot(µ) and L(µ, I∗(µ),x∗(µ, I∗(µ))) as a function of

µ for N = K = 5, and Pcon = 100. (See Section 3.6 for details.) The red vertical lines
in the top plot show that a change in I∗(µ) occurs at that µ.

Lemma 2 allows us to do a bisection-search over µ since X∗
tot(µ) is a decreasing

function of µ and the optimal µ is the one at which X∗
tot(µ) = Pcon. In particular,
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if µ∗ ∈ [µ, µ̄] for some µ and µ̄, then µ∗ ∈
[
µ+µ̄

2
, µ̄
]

if X∗
tot

(
µ+µ̄

2

)

> Pcon, otherwise

µ∗ ∈
[

µ,
µ+µ̄

2

]

. Using this concept, we propose an algorithm in Table 3.1 (see end

of chapter) that finds an interval [µ, µ̄], such that µ∗ ∈ [µ, µ̄] and µ̄ − µ ≤ κ, where

κ (> 0) is a tuning-parameter, and allocates resources based on optimal resource

allocations at µ and µ̄.

The following lemma characterizes the relationship between the tuning parameter

κ and the accuracy of the obtained solution.

Lemma 3. Let µ∗ ∈ [µ, µ̄] be the point where the proposed CSRA algorithm stops,
and the total utility obtained by the proposed algorithm and the exact CSRA solution
be ÛCSRA(µ, µ̄) and U∗

CSRA, respectively. Then, 0 ≤ U∗
CSRA− ÛCSRA(µ, µ̄) ≤ (µ̄−µ)Pcon.

Proof. For proof, see Appendix B.3.

Since our algorithm stops when µ̄−µ ≤ κ, from Lemma 3, the gap between the ob-

tained utility and the optimal utility is bounded by Pconκ. Moreover, limµ→µ̄ ÛCSRA(µ, µ̄) =

U∗
CSRA.

The proposed algorithm requires at most
⌈
log2

(
µmax−µmin

κ

)⌉
iterations of µ in order

to find µ̄, and µ such that µ̄ − µ ≤ κ and µ∗ ∈ [µ, µ̄]. Therefore, measuring the

complexity of the algorithm by the number of times (3.11) must be solved for a given

(n, k,m, µ), the proposed algorithm takes at most

NKM
⌈
log2

(
µmax−µmin

κ

)⌉
(3.32)

steps. We use this method of measuring complexity because it allows us to easily

compare all algorithms in this chapter. Note that, for a given κ, the number of steps

taken by the proposed bisection algorithm is proportional to log2 κ.

54



3.4.5 Some properties of the CSRA solution

In this subsection, we study a few properties of the CSRA solution that yield

valuable insights into the optimal resource allocation strategy for any given value

of Lagrange multiplier, µ. Let us fix a µ̃ ∈ [µmin, µmax]. Now, if |Sn(µ̃)| ≤ 1, ∀n,

then the optimal allocation at µ̃, I∗(µ̃), is given by (3.16), which reveals that I∗(µ̃) ∈

{0, 1}N×K×M . In this case, the definition of ICSRA implies that every subchannel

is allocated to at most one user-MCS combination. Note that this is precisely the

constraint we impose in the later part of this chapter. Let us now consider the case

where it is possible that |Sn(µ̃)| > 1 for some n.

Lemma 4. For any µ̃ > 0, there exists a δ > 0 such that for all µ ∈ (µ̃−δ, µ̃+δ)\{µ̃},
there exists an optimal allocation, I∗(µ) ∈ ICSRA, that satisfies I∗(µ) ∈ {0, 1}N×K×M .
Moreover, if µ1, µ2 ∈ (µ̃ − δ, µ̃), then there exists I∗(µ1), I

∗(µ2) ∈ {0, 1}N×K×M such
that I∗(µ1) = I∗(µ2). The same property holds if both µ1, µ2 ∈ (µ̃, µ̃+ δ).

Proof. Proof is given in Appendix B.4.

In conjunction with (3.12), the above lemma implies that the discontinuities in

Fig. 3.3 are isolated and that, around every point on the horizontal axis, there is a

small region over which X∗
tot(µ) is continuous. Hence, the number of such discontinu-

ities are, at most, countable.

3.5 Scheduling and Resource Allocation without subchannel

sharing

In this section, we will solve the scheduling and resource allocation (SRA) problem

(3.1) under the constraint that In,k,m ∈ {0, 1}, i.e., that each subchannel can be

allocated to at most one combination of user and MCS per time slot. We will refer to

this problem as the “discrete scheduling and resource allocation” (DSRA) problem.
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Storing the values of In,k,m in the N × K × M matrix I, the DSRA subchannel

constraint can be expressed as I ∈ IDSRA, where

IDSRA :=

{

I : I ∈ {0, 1}N×K×M ,
∑

k,m

In,k,m ≤ 1 ∀n
}

.

Then, using (3.1), the DSRA problem can be stated as

DSRA := max
{pn,k,m≥0}
I∈IDSRA

∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ak,me

−bk,mpn,k,mγn,k)rk,m
)}

s.t.
∑

n,k,m

In,k,mpn,k,m ≤ Pcon. (3.33)

Let us denote the optimal I and p for (3.33) by I∗DSRA and p∗
DSRA, respectively.

The DSRA problem is a mixed-integer programming problem. Mixed-integer pro-

gramming problems are generally NP-hard, meaning that polynomial-time solutions

do not exist [43]. Fortunately, in some cases, such as ours, one can exploit the

problem structure to design polynomial-complexity algorithms that reach solutions

in close vicinity of the exact solution. We first describe an approach to solve the

DSRA mixed-integer programming problem exactly by exhaustively searching over

all possible user-MCS allocations in order to arrive at the optimal user, rate, and

power allocation. We will see that this “brute-force” approach has a complexity that

grows exponentially in the number of subchannels. Later, we will exploit the DSRA

problem structure, and its relation to the CSRA problem, to design an algorithm

with near-optimal performance and polynomial complexity.

3.5.1 Brute-force algorithm

Consider that, if we attempted to solve our DSRA problem via brute-force (i.e.,

by solving the power allocation sub-problem for every possible choice of I ∈ IDSRA),
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we would solve the following sub-problem for every given I.

max
{pn,k,m≥0}

∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ak,me

−bk,mpn,k,mγn,k)rk,m
)}

s.t.
∑

n,k,m

In,k,m pn,k,m ≤ Pcon. (3.34)

Borrowing our approach to the CSRA problem, we could transform the variable pn,k,m

into xn,k,m via the relation: xn,k,m = In,k,m pn,k,m. The problem in (3.34) can, there-

fore, be written as:

min
{xn,k,m≥0}

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) s.t.
∑

n,k,m

xn,k,m ≤ Pcon, (3.35)

where Fn,k,m(In,k,m, xn,k,m) is defined in (3.4). This problem is a convex optimiza-

tion problem that satisfies Slater’s condition [42] when xn,k,m = Pcon/2NKM for all

n, k,m. Therefore, its solution is equal to the solution of its dual problem (i.e., zero

duality gap) [42]. To formulate the dual problem, we write the Lagrangian of the

primal problem (3.35) as

LI(µ,x) =
∑

n,k,m

In,k,mFn,k,m(In,k,m, xn,k,m) +
( ∑

n,k,m

xn,k,m − Pcon

)

µ, (3.36)

where µ is the dual variable and x is the N×K×M matrix containing actual powers

allocated to all (n, k,m) combinations. Note that the Lagrangian in (3.36) is exactly

the same as the Lagrangian for the CSRA problem in (3.5). Using (3.36), the dual of

the brute-force problem can be written as

max
µ≥0

min
x�0

LI(µ,x) = max
µ≥0

LI(µ,x
∗(µ)) = LI(µ

∗
I ,x

∗(µ∗
I)), (3.37)

for optimal solutions µ∗
I and x∗(µ∗

I). Minimizing LI(µ,x) over {x � 0} by equating

the differential of LI(µ,x) w.r.t. xn,k,m to zero (which is identical to the approach

taken in Section 3.4.1 for the CSRA problem), we get that, for any subchannel n,

x∗
n,k,m(µ) = In,k,m p∗n,k,m(µ). (3.38)
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Here,

p∗n,k,m(µ) =

{

p̃n,k,m(µ) if 0 ≤ µ ≤ ak,mbk,mrk,mU
′
n,k,m

(
(1− ak,m)rk,m

)
E{γn,k}

0 otherwise,

(3.39)

and p̃n,k,m(µ) is the unique
13 value satisfying (3.11), repeated as (3.40) for convenience.

µ = ak,mbk,mrk,m E
{
U ′
n,k,m

(
(1− ak,me

−bk,mp̃n,k,m(µ)γn,k)rk,m
)
γn,ke

−bk,mp̃n,k,m(µ)γn,k
}
.

(3.40)

Note that the Lagrangian as well as the power allocation in (3.36) and (3.38) are

identical to that obtained for the CSRA problem in (3.5) and (3.12), respectively. Also

recall that (3.19)-(3.21) hold even when I∗(µ) is replaced by arbitrary I. Thus, we have

µ∗
I ∈ [µmin, µmax], where µmin and µmin are defined in (3.20) and (3.21), respectively.

As discussed in Section 3.4.1, p̃n,k,m(µ) is a strictly-decreasing continuous function

of µ, which makes p∗n,k,m(µ) a decreasing continuous function of µ. Let us now define

X∗
tot(I, µ) ,

∑

n,k,m

x∗
n,k,m(µ) =

∑

n,k,m

In,k,mp
∗
n,k,m(µ) (3.41)

as the total optimal power allocation for allocation I at µ. Therefore, X∗
tot(I, µ) is also

a decreasing continuous function of µ. This reduces our problem to finding the mini-

mum value of µ ∈ [µmin, µmax] for which X∗
tot(I, µ) = Pcon. Such a problem structure

(i.e., finding the minimum Lagrange multiplier satisfying a sum-power constraint)

yields a water-filling solution (e.g., [33, 44]). To obtain such a solution (in our case,

µ∗
I) one can use the bisection-search algorithm given in Table 3.1 (see end of chapter).

While there are many ways to find µ, we focus on bisection-search for easy com-

parison to the CSRA algorithm. Then, to solve the resource allocation problem for a

13By assumption, U ′
n,k,m(·) is a decreasing positive function and e−bk,mp̃n,k,m(µ)γn,k is a strictly-

decreasing positive function of p̃n,k,m(µ), which makes the right side of (3.40) a strictly-decreasing
positive function of p̃n,k,m(µ).
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given I ∈ IDSRA, the complexity, in terms of the number of times (3.40) (or (3.11)) is

solved to yield µ̂I such that |µ̂I − µ∗
I | < κ, is

(∑

n,k,m In,k,m
) ⌈

log2
(
µmax−µmin

κ

)⌉
. Since

the brute-force algorithm examines |IDSRA| = (KM + 1)N hypotheses of I, the corre-

sponding complexity needed to find the exact DSRA solution is
⌈
log2

(
µmax−µmin

κ

)⌉
×

∑N
n=1 n

(
N
n

)
(KM)n or, equivalently,

⌈
log2

(
µmax−µmin

κ

)⌉
× (KM + 1)N−1NKM. (3.42)

Because this “brute-force” algorithm may be impractical to implement for prac-

tical values of K, M , and N , we focus, in the sequel, on lower-complexity DSRA

approximations. In doing so, we exploit insights previously gained from our study of

the CSRA problem.

3.5.2 Proposed DSRA algorithm

Equation (3.30) in Section 3.4.2 demonstrated that there exists an optimal user-

MCS allocation for the CSRA problem that either lies in the domain of DSRA prob-

lem, i.e., I∗(µ∗) ∈ IDSRA, or is a convex combination of two points from the domain

of DSRA problem, i.e., I∗(µ∗) = λImin(µ∗) + (1 − λ)Imax(µ∗), where Imin(µ∗) 6= Imax(µ∗)

and Imin(µ∗), Imax(µ∗) ∈ IDSRA. (Note that if I ∈ ICSRA and I ∈ {0, 1}N×K×M , then

I ∈ IDSRA.) This observation motivates us to attack the DSRA problem using the

CSRA algorithm. In this section, we provide the details of such an approach.

The following lemma will be instrumental in understanding the relationship be-

tween the CSRA and DSRA problems and will serve as the basis for allocating re-

sources in the DSRA problem setup.

Lemma 5. If the solution of the Lagrangian dual of the CSRA problem (3.6) for
a given µ is such that I∗(µ) ∈ {0, 1}N×K×M , and the corresponding total power is
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X∗
tot(µ) as in (3.31), then the solution to the optimization problem

(P∗, I∗) = argmax
{P�0}
I∈IDSRA

∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ak,me

−bk,mPn,k,mγn,k)rk,m
)}

s.t.
∑

n,k,m

In,k,mPn,k,m ≤ X∗
tot(µ)

satisfies I∗ = I∗(µ) and, for every (n, k,m), P∗
n,k,m =

{x∗
n,k,m(µ,I∗(µ))

I∗n,k,m(µ)
if I∗n,k,m(µ) 6= 0

0 otherwise.

Proof. Proof is given in Appendix B.5.

From the above lemma, we conclude that if a µ exists such that I∗(µ) ∈ IDSRA

and X∗
tot(µ) = Pcon, then the DSRA problem is solved exactly by the CSRA solution

(I∗(µ),x∗(µ, I∗(µ))), i.e., the optimal user-MCS allocation I∗DSRA equals I∗(µ) and the

optimal power allocation, p∗
DSRA, for any (n, k,m), is

p∗n,k,m,DSRA =

{x∗
n,k,m(µ,I∗(µ)))

I∗n,k,m(µ)
if I∗n,k,m(µ) 6= 0

0 otherwise.
(3.43)

Recall that the optimal total power achieved for a given value of Lagrange multiplier

µ, i.e., X∗
tot(µ) =

∑

n,k,m x∗
n,k,m(µ, I

∗(µ)), is piece-wise continuous and that a discon-

tinuity (or “gap”) occurs at µ when multiple allocations achieving the same optimal

value of Lagrangian exist. When the sum-power constraint, Pcon, lies in one of those

“gaps,” the optimal allocation for the CSRA problem equals a convex combination

of two elements from the set IDSRA, and the CSRA solution is not admissible for

DSRA. In such cases, we are motivated to choose the approximate DSRA solution

ÎDSRA ∈ {Imin(µ), Imax(µ)} yielding highest utility. In Table 3.1 (see end of chapter),

we detail an implementation of our proposed DSRA algorithm that has significantly

lower complexity than brute-force. The numerical simulations in Section 3.6 show

that its performance is very close to optimal. Moreover, the following lemma bounds
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the asymptotic difference in utility achieved by the exact DSRA solution and that

produced by our proposed DSRA algorithm.

Lemma 6. Let µ∗ be the optimal µ for the CSRA problem and µ, µ̄ be such that

µ∗ ∈ [µ, µ̄]. Let U∗
DSRA and ÛDSRA(µ, µ̄) be the utilities achieved by the exact DSRA

solution and the proposed DSRA algorithm, respectively. Then,

0 ≤ U∗
DSRA − lim

µ→µ̄
ÛDSRA(µ, µ̄)

≤ (µ∗ − µmin)
(
Pcon −X∗

tot(I
min(µ∗), µ∗)

)
(3.44)

≤
{

0 if |Sn(µ
∗)| ≤ 1 ∀n

(
µmax − µmin

)
Pcon otherwise

. (3.45)

Proof. The proof is given in Appendix B.6.

It is interesting to note that the bound (3.45) does not scale with number of users

K or subchannels N .

The complexity of the proposed DSRA algorithm is marginally greater than that

of the CSRA algorithm, since an additional comparison of two possible user-MCS

allocation choices is involved. In units of solving (3.11) for a given (n, k,m, µ), the

DSRA complexity is at most

N(KM + 2)
⌈
log2

(
µmax−µmin

κ

)⌉
. (3.46)

Comparing (3.42) and (3.46), we find that the complexity of the proposed DSRA

algorithm is polynomial in N,K,M , which is considerably less than that of the brute-

force algorithm (i.e., exponential in N).

3.5.3 Discussion

Before concluding this section, we make some remarks about our approach to

DSRA and its connections to CSRA. First, we note that the DSRA problem is an

integer-programming problem due to the discrete domain {0, 1} assumed for In,k,m.
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Because integer programming problems are generally NP-hard (recall our “brute

force” DSRA solution), one is strongly motivated to find a polynomial-complexity

method whose performance is as high as possible. One possible approach is based

on “relaxation,” whereby the discrete domain is relaxed to an interval domain, the

relaxed problem is solved (with polynomial complexity), and the obtained solution

is mapped back to the discrete domain. In fact, relaxation was previously employed

for OFDMA frequency-scheduling in [33, 35], and the DSRA approximation that we

propose in Section 3.5.2 can also be interpreted as a form of relaxation.

The optimization literature suggests that relaxation is successful in some—but not

all—cases, implying that relaxation-based OFDMA algorithms must be designed with

care. For example, relaxation has widely used to solve linear integer programs (LIPs)

[45–47]. The DSRA, however, is a mixed-integer nonlinear program (MINLP), and for

such problems relaxation does not always perform well [47,48]. Now, one could cite the

analysis in [49, p. 371], which shows that—for a broad class of integer programming

problems—the duality gap goes to zero as the number of integer variables goes to

infinity, to suggest that the DSRA problem can be well approximated by its relaxed

counterpart, CSRA, as the number of OFDMA subchannels N → ∞. However, in

practice, the number of subchannels N is often quite small, preventing the application

of this argument. For example, in LTE systems [30, 50], each subchannel consists of

12 subcarriers, so that only 25 subchannels are used for 5 MHz bandwidths, and only

6 are used for 1.4 MHz bandwidths.

The above considerations have motivated us to investigate, in detail, the relation-

ship between the continuous and discrete resource allocation scenarios. The results of
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our investigation include insights into the dissimilarity between CSRA and DSRA so-

lutions (e.g., Lemma 4 and Lemma 5), and an efficient polynomial-complexity DSRA

approximation that (as we shall see in Section 3.6) performs near-optimally for all N

and admits the tight performance bound (3.45).

3.6 Numerical Evaluation

In this section, we analyze the performance of an OFDMA downlink system that

uses the proposed CSRA and DSRA algorithms for scheduling and resource allo-

cation under different system parameters. Unless otherwise specified, we use the

sum-goodput utility Un,k,m(g) = g.

For downlink transmission, the BS employs an uncoded 2m+1-QAM signaling

scheme with MCS index m ∈ {1, . . . , 15}. In this case, we have rk,m = m+1 bits per

symbol and one symbol per codeword. In the error rate model ǫk,m(pγ) = ak,me
−bk,mpγ,

we choose ak,m = 1 and bk,m = 1.5/(2m+1 − 1) because the actual symbol error rate

of a 2m+1-QAM system is proportional to exp(−1.5pγ/(2m+1 − 1)) in the high-(pγ)

regime [51] and is ≈ 1 when pγ = 0. We use the standard OFDM model [52] to

describe the (instantaneous) frequency-domain observation made by the kth user on

the nth subchannel:

yn,k = hn,kxn + νn,k, for n ∈ {1, . . . , N} and k ∈ {1, . . . , K} (3.47)

In (3.47), xn denotes the QAM symbol broadcast by the BS on the nth subchannel,

hn,k the gain of the nth subchannel between the kth user and the BS, and νn,k a

corresponding complex Gaussian noise sample. We assume that {νn,k} is unit variance

and white across (n, k), and we recall that the exogenous subchannel-SNR satisfies

γn,k = |hn,k|2. We furthermore assume that the kth user’s frequency-domain channel
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gains hk = (h1,k, . . . , hN,k)
T ∈ C

N are related to its channel impulse response gk =

(g1,k, . . . , gL,k)
T ∈ CL via hk = Fgk, where F ∈ CN×L contains the first L(< N)

columns of the N -DFT matrix, and where {gl,k} are i.i.d. over (l, k) and drawn

from a zero-mean complex Gaussian distribution with variance σ2
g chosen so that

E{γn,k} = 1. Since the total available power for all subchannels at the base-station is

Pcon, the average available SNR per subchannel will be denoted by SNR = Pcon

N
E{γn,k}.

To model imperfect CSI, we assume that there is a channel-estimation period

during which the mobiles take turns to each broadcast one pilot OFDM symbol, from

which the BS estimates the corresponding subchannel gains. Furthermore, we assume

that the channels do not vary between pilot and data periods. To estimate hk, we

assume that the BS observes ỹk =
√
ppilot hk + ν̃k ∈ CN . Note that the average SNR

per subchannel under pilot transmission is SNRpilot = ppilot E{γn,k}. The channel hk

and the pilot observations ỹk are zero-mean jointly Gaussian, and furthermore hk|ỹk

is Gaussian with mean E{hk|ỹk} = Rhk,ỹk
R−1

ỹk,ỹk
ỹk and covariance Cov(hk|ỹk) =

Rhk,hk
− Rhk,ỹk

R−1
ỹk ,ỹk

Rỹkhk
, where Rz1,z2 denotes the cross-correlation of random

vectors z1 and z2 [53, pp. 155]. Since Rhk,hk
= σ2

gFF
′, Rhk,ỹk

=
√
ppilotσ

2
gFF

′, and

Rỹk,ỹk
= ppilotσ

2
gFF

′ + I (where I denotes the identity matrix), it is straightforward

to show that the elements on the diagonal of Cov(hk|ỹk) are equal. Furthermore,

E{hk|ỹk} can be recognized as the pilot-aided MMSE estimate of hk. In summary,

conditioned on the pilot observations, hn,k is Gaussian with mean ĥn,k given by the

nth element of E{hk|ỹk}, and with variance σ2
e given by the first diagonal element

of Cov(hk|ỹk). Thus, conditioned on the pilot observations, γn,k has a non-central

chi-squared distribution with two degrees of freedom.
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We will refer to the proposed CSRA and DSRA algorithms implemented under im-

perfect CSI as “CSRA-ICSI” and “DSRA-ICSI,” respectively. Their performances will

be compared to that of “CSRA-PCSI,” i.e., CSRA implemented under perfect CSI,

which serves as a performance upper bound, and fixed-power random-user scheduling

(FP-RUS), which serves as a performance lower bound. FP-RUS schedules, on each

subchannel, one user selected uniformly from {1, . . . , K}, to which it allocates power

Pcon/N and the fixed MCS m that maximizes expected goodput. Unless specified,

the number of OFDM subchannels is N = 64, the number of users is K = 16, the

impulse response length is L = 2, the average SNR per subchannel is SNR = 10

dB, the pilot SNR is SNRpilot = −10 dB, and the DSRA/CSRA tuning parameter is

κ = 0.3/Pcon (recall Table 3.1 at the end of this chapter). In all plots, goodput values

were empirically averaged over 1000 realizations.

Figure 3.4 plots the subchannel-averaged goodput achieved by the above-described

scheduling and resource-allocation schemes for different grades of CSI. In this curve,

SNRpilot is varied so as to obtain estimates of subchannel SNR with different grades of

accuracy. All other parameters remain unchanged. The plot shows that, as SNRpilot

is increased, the performance of the proposed schemes (under the availability of im-

perfect CSI) increases from that of FP-RUS to that achieved by CSRA-PCSI. This is

expected because, with increasing SNRpilot, the BS uses more accurate channel-state

information for scheduling and resource allocation, and thus achieves higher good-

put. The plot also shows that, even though the proposed CSRA algorithm exactly

solves the CSRA problem and the proposed DSRA algorithm approximately solves

the DSRA problem, their performances almost coincide. In particular, although the

goodput achieved by CSRA-ICSI scheme exceeded that of DSRA-ICSI scheme in
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up-to 49% of the realizations, the maximum difference in the subchannel-averaged

goodput was merely 4 × 10−3 bits per channel-use (bpcu). Since the DSRA-ICSI

schemes cannot achieve a sum-goodput higher than that achieved by the CSRA-ICSI

scheme, it can be deduced that the proposed DSRA algorithm is exhibiting near-

optimal performance.
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Figure 3.4: Average goodput per subchannel versus SNRpilot. Here, N = 64, K = 16,
and SNR = 10 dB.

Figure 3.5 plots the subchannel-averaged goodput versus the number of available

users, K, ranging between 1 and 32. It shows that, as K increases, the goodput

per subchannel achieved by the proposed schemes increase under both perfect and

imperfect CSI, whereas that achieved by the FP-RUS scheme remains constant. This

is because, in the former case, the availability of more users can be exploited to

schedule users with stronger subchannels, whereas, in the FP-RUS scheme, users are
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scheduled without regard to the instantaneous channel conditions. Similar to the

observations in the previous plots, the performance difference between the proposed

CSRA and DSRA algorithms remains negligible. In particular, although the goodput

achieved by CSRA-ICSI exceeded that of DSRA-ICSI in up-to 29% of the realizations,

the maximum difference in the subchannel-averaged goodput was merely 7 × 10−4

bpcu.
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Figure 3.5: Average goodput per subchannel versus number of users, K. In this plot,
N = 64, SNR = 10 dB, and SNRpilot = −10 dB.

In Figure 3.6, the top plot shows the subchannel-averaged goodput and the bottom

plot shows the subchannel and realization-averaged value of the bound (3.44) on the

DSRA-ICSI optimality gap as a function of SNR. In the top plot, it can be seen that,

as SNR increases, the difference between CSRA-PCSI and CSRA-ICSI (or, DSRA-

ICSI) increases. However, the difference grows slower than the difference between
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CSRA-PCSI and FP-RUS. Interestingly, even for high values of SNR, the performance

of CSRA-ICSI and DSRA-ICSI remain almost identical. In particular, although the

goodput achieved by CSRA-ICSI scheme exceeded that of DSRA-ICSI scheme in up-to

28% of the realizations, the maximum difference in the subchannel-averaged goodput

was merely 4 × 10−5 bpcu. The bottom plot, which illustrates the average value

of (µ∗ − µmin)
(
Pcon −X∗

tot(I
min, µ∗)

)
over all realizations and subchannels w.r.t. SNR,

shows that the loss in sum-goodput over all subchannels due to the sub-optimality

of proposed DSRA solution under imperfect CSI is bounded by 7 × 10−3 bpcu, even

when the subchannel-averaged goodput of DSRA-ICSI is of the order of tens of bpcu.

These results confirm that the bound (3.44) is quite tight at high SNR.
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Figure 3.6: The top plot shows the average goodput per subchannel as a function
of SNR. The bottom plot shows the average bound on the optimality gap between
the proposed and exact DSRA solutions (given in (3.44)), i.e., the average value of
(µ∗−µmin)(Pcon−X∗

tot(I
min, µ∗))/N . In this plot, N = 64, K = 16, and SNRpilot = −10

dB.
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Figure 3.7 shows the performance of the proposed DSRA algorithm under a sum-

utility criterion that is motivated by a common pricing model for an elastic application

such as file-transfer [27, 28]. In particular, we partitioned the K = 16 users into two

classes: k ∈ {1, . . . , 8} , K1 is “Class 1” and k ∈ {9, . . . , 16} , K2 is “Class 2,” and

we ran DSRA with the utility Uk(g) , (1− e−w1g)1k∈K1 + (1− e−w2g)1k∈K2, where 1E

denotes the indicator of event E . The utility can be regarded as the revenue earned

by the operator: when wi > wj , Class-i users pay more (for a given goodput g)

than Class-j users in exchange for priority service. In Fig. 3.7, we show the resulting

DSRA-maximized utility summed over all users, as well as that summed over each

individual user class. For comparison, we show the utility (summed over all users)

when DSRA is “naively” used to maximize sum-goodput instead of sum-utility. The

top plot in Fig. 3.7 shows performance as a function of w1, for fixed w2 = 1 and

SNR = 0 dB. There the behavior is as expected: when w1 ≪ w2 = 1 (i.e., Class-1

users pay much less) DSRA allocates the overwhelming majority of the resources to

Class-2 users, in an effort to earn more revenue. Meanwhile, when w1 ≫ w2 = 1,

the overwhelming majority of resources are allocated to Class-1 users. Moreover,

it is evident that the naive goodput-maximizing scheme does not earn the operator

as much revenue as the utility-maximizing scheme (outside of the trivial case that

w1 = w2). The bottom plot in Fig. 3.7 shows the above described sum-utilities as a

function of SNR, for fixed w1 = 0.85 and w2 = 1. There it can be seen that, at low

SNR, the two classes achieve proportional utilities while, at high SNR, the utility of

Class-1 users tend to zero. This behavior can be explained as follows: At low SNR,

the goodputs g are small, in which case 1 − e−wig ≈ wig, so that Uk(g) ≈ wig1k∈Ki
,

i.e., weighted-goodput utility. At high SNR, this approximation does not hold because
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the goodputs g are usually large, and this particular pricing-based utility becomes

increasingly unfair.
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Figure 3.7: The top plot shows sum utility versus w1 when w2 = 1, SNR = 0 dB.
The bottom plot shows the sum-utility versus SNR when w1 = 0.85, w2 = 1. Here,
N = 64, K = 16, and SNRpilot = −10 dB.

In Figure 3.8, we compare the performances of our proposed algorithms to the

state-of-the-art algorithms in [31, 33]. In particular, we first compare the golden-

section-search based algorithm from [31] to our CSRA algorithm. For CSRA, we

choose the utility function and the SNR distributions to maximize the upper bound on

capacity computed via the effective SNR 1
K

∑

n,k log
(
1+

pn,k,1|ĥn,k|4
|ĥn,k|2+σ2

e pn,k,1|ĥn,k|2
)
from [31,

Eq. (4)]. Second, we compare the subgradient-based algorithm proposed for discrete

allocation in [33] to our DSRA algorithm. For DSRA, we choose the utility Un,k,m(g) =

1
K
log(1− log(1− g)) ∀n, k,m, so that we maximize 1

K

∑

n,k E{log(1 + pn,k,1γn,k)}, as
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in [33]. The top plot in Fig. 3.8 shows the mean deviation of the estimated value of

the dual variable µ from the optimum (i.e., µ∗), and the bottom plot shows the total

utility achieved as a function of the number of µ-updates. For the subgradient-based

algorithm in [33], we set the step-size in the ith µ-update to be 1/i. In the top plot,

it can be seen that the proposed algorithms outperform the algorithms in [31,33] and

converge toward µ∗ at a much faster rate. The bottom plot shows that the proposed

algorithms achieve a much higher utility than the algorithms in [31, 33] for the first

few µ-updates, illustrating the speed of our approaches. Note that the golden-section

algorithm only provides estimates of µ∗ at even numbers of µ-updates.
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3.7 Conclusion

In this chapter, we considered the problem of joint scheduling and resource alloca-

tion (SRA) in downlink OFDMA systems under imperfect channel-state information.

We considered two scenarios: 1) when subchannel sharing is allowed, and 2) when

it is not. Both cases were framed as optimization problems that maximize a utility

function subject to a sum-power constraint. Although the optimization problem in

the first scenario (the so-called “continuous” or CSRA case) was found to be non-

convex, we showed that it can be converted to a convex optimization problem and

solved using a dual optimization approach with zero duality gap. An algorithmic

implementation of the CSRA solution was also provided. The optimization prob-

lem faced in the second scenario (the so-called “discrete” or DSRA case) was found

to be a mixed-integer programming problem. To attack it, we linked the DSRA

problem to the CSRA problem, and showed that, in some cases, the DSRA solution

coincides with the CSRA solution. For the case that the solutions do not coincide,

we proposed a practical DSRA algorithm and bounded its performance. Numerical

results were then presented under a variety of settings. The performance of the pro-

posed CSRA and DSRA algorithms schemes under imperfect CSI were compared to

those under perfect CSI and no instantaneous CSI (i.e., fixed-power random schedul-

ing). In all cases, it was found that the proposed imperfect-CSI-based algorithms

offer a significant advantage over schemes that do not use instantaneous CSI. Next,

our DSRA bound was numerically evaluated and found to be extremely tight. We

then demonstrated an application of DSRA to maximization of a pricing-based util-

ity. Finally, our CSRA and DSRA algorithms were compared to the state-of-the-art
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golden-section-search [31] and subgradient [33] based algorithms and shown to yield

significant improvements in convergence rate.
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Table 3.1: Algorithmic implementations of the proposed algorithms

Proposed CSRA algorithm Brute force algorithm for a given I

1. Set µ = µmin, µ̄ = µmax, and µ =
µ+µ̄

2 .

2. For each subchannel n = 1, . . . , N :

(a) For each (k,m),

i. Use (3.11) and (3.13) to calculate
p∗n,k,m(µ).

ii. Use (3.14) to calculate
Vn,k,m(µ, p∗n,k,m(µ)).

(b) Calculate Sn(µ) using (3.15).

3. If |Sn(µ)| ≤ 1 ∀n, then find I∗(µ) using (3.16),
else use (3.30) and set I∗(µ) = Imin(µ).

4. Find x∗(µ, I∗(µ)) using (3.12) and calculate
X∗

tot(µ) =
∑

n,k,m x∗
n,k,m(µ, I∗(µ)).

5. If X∗
tot(µ) ≥ Pcon, set µ = µ, otherwise set

µ̄ = µ.

6. If µ̄− µ > κ, go to step 2), else proceed.

7. Now we have µ∗ ∈ [µ, µ̄] and µ̄ − µ < κ. If

X∗
tot(µ) 6= X∗

tot(µ̄), set λ =
X∗

tot(µ)−Pcon

X∗

tot(µ)−X∗

tot(µ̄)
, else

set λ = 0.

8. The optimal user-MCS allocation is given by
ÎCSRA = λI∗(µ̄) + (1 − λ)I∗(µ) and the cor-
responding optimal x is given by x̂CSRA =
λx∗(µ̄, I∗(µ̄)) + (1 − λ)x∗(µ, I∗(µ)). The op-
timal power allocation, p̂CSRA, then can be
found using

p̂n,k,m,CSRA=















x̂n,k,m,CSRA

În,k,m,CSRA
if În,k,m,CSRA 6= 0

0 otherwise,

where În,k,m,CSRA and x̂n,k,m,CSRA denote the

(n, k,m)th component of ÎCSRA and x̂CSRA, re-
spectively. Notice that the obtained solution
satisfies the sum-power constraint with equal-
ity.

1. Initialize µ = µmin and µ̄ = µmax.

2. Set µ =
µ+µ̄

2 .

3. For each (n, k,m), use (3.38)-(3.40) to obtain
x∗
n,k,m(µ).

4. Find X∗
tot(I, µ) using (3.41).

5. If X∗
tot(I, µ) > Pcon , set µ = µ, otherwise set

µ̄ = µ.

6. If µ̄ − µ < κ, go to step 7), otherwise go to
step 2).

7. If X∗
tot(I, µ̄) 6= X∗

tot(I, µ), set λ =
X∗

tot(I,µ)−Pcon

X∗

tot(I,µ)−X∗

tot(I,µ̄)
, otherwise set λ = 0.

8. Set µ̂I = µ̄. The best actual power allocation
is given by x̂I = λx∗(µ̄) + (1 − λ)x∗(µ) and
the best power allocation, p̂I, is given by

p̂n,k,m,I =







x̂n,k,m,I

In,k,m
if In,k,m 6= 0

0 otherwise,

where p̂n,k,m,I and x̂n,k,m,I are the (n, k,m)th

element of p̂I and x̂I, respectively. The cor-
responding Lagrangian, found using L̂I =
LI(µ̄,p

∗(µ)), gives the optimal Lagrangian
value.

Proposed DSRA algorithm

1. Use the algorithmic implementation of the
proposed CSRA solution in to find I∗(µ) and
I∗(µ̄), where the optimal µ for the CSRA
problem, i.e., µ∗ lies in the set [µ, µ̄], µ̄−µ < κ,
and I∗(µ), I∗(µ̄) ∈ IDSRA.

2. For both I = I∗(µ) and I = I∗(µ̄) (since they

may differ), calculate p̂I and L̂I as described
for the brute force algorithm.

3. Choose ÎDSRA = argmin
I∈{I∗(µ), I∗(µ̄)} L̂I as

the user-MCS allocation and p̂DSRA = p̂
ÎDSRA

as the associated power allocation.74



Chapter 4: Joint Scheduling and Resource Allocation in
OFDMA Downlink Systems via ACK/NAK Feedback

4.1 Introduction

The OFDMA scheduling-and-resource-allocation problem has been addressed in

a number of studies that assume the availability of perfect channel state information

(CSI) at the BS (e.g., [34–37, 39, 44, 54]). As mentioned in the previous chapter,

in practice, it is difficult for the BS to maintain perfect CSI for all users and all

subchannels (particularly when the number of users is large) since CSI is most easily

obtained at the user terminals, and the bandwidth available for feedback of CSI to the

BS is scarce. Hence, practical resource allocation schemes use some form of limited

feedback [55], such as quantized channel gains.

In the previous chapter, we studied an instantaneous resource allocation problem

under the availability of a generic distribution on the channnel-gains of users, and

presented results assuming pilot-aided channel knowledge at the base-station. In this

chapter, we consider the exclusive use of ACK/NAK feedback, as provided by the

automatic repeat request (ARQ) [56] mechanism present in most wireless downlinks.

We assume standard ARQ,14 where every scheduled user provides the BS with either

14 The approach we develop in this chapter could be easily extended to other forms of link-layer
feedback, e.g., Type-I and Type-II Hybrid ARQ. For simplicity and ease of exposition, however, we
consider only standard ARQ.

75



an acknowledgment (ACK), if the most recent data packet has been correctly decoded,

or a negative acknowledgment (NAK), if not. Although ACK/NAKs do not provide

direct information about the state of the channel, they do provide relative information

about channel quality that can be used for the purpose of transmitter adaptation

(e.g., [57, 58]). For example, if an NAK was received for a particular packet, then it

is likely that the subchannel’s signal-to-noise ratio (SNR) was below that required

to support the transmission rate used for that packet. We consider the exclusive use

ACK/NAK feedback provided by the link layer, because this allows us to completely

avoid any additional feedback, such as feedback about quantized channel gains.

There are interesting implications to the use of (quantized) error-rate feedback

(like ACK/NAK) for transmitter adaptation, as opposed to quantized channel-state

feedback. With error-rate feedback, the transmission parameters applied at a given

time-slot affect not only the throughput for that slot, but also the corresponding

feedback, which will impact the quality of future transmitter-CSI, and thus future

throughput. For example, if the transmission parameters are chosen to maximize

only the instantaneous throughput, e.g., by scheduling those users that the BS believes

are currently best, then little will be learned about the changing states of other user

channels, implying that future scheduling decisions may be compromised. On the

other hand, if the BS schedules not-recently-scheduled users solely for the purpose of

probing their channels, then instantaneous throughput may be compromised. Thus,

when using error-rate feedback, the BS must navigate the classic tradeoff between

exploitation and exploration [59].
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In this work, we propose a scheme whereby the BS uses ACK/NAK feedback

to maintain a posterior channel distribution for every user and, from these distri-

butions, performs simultaneous user subchannel-scheduling, power-allocation, and

rate-selection. In doing so, the BS aims to maximize an expected, long-term, generic

utility criterion that is a function of the per-user/channel/rate goodputs. Our use

of a generic utility-based criterion allows us to handle, e.g., sum-capacity maximiza-

tion, throughput maximization under practical modulation-and-coding schemes, and

throughput-based pricing (e.g., [26–28]), as discussed in the sequel. To this end,

we exploit the results in Chapter 3, which offers an efficient near-optimal scheme

for utility-based OFDMA resource allocation under probabilistic CSI. Our use of

ACK/NAK-feedback, however, makes our problem considerably more complicated

than the one considered in Chapter 3. For example, as we show in the sequel, the op-

timal solution to our expected long-term utility-maximization problem is a partially

observable Markov decision process (POMDP) that would involve the solution of many

mixed-integer optimization problems during each time-slot. Due to the impracticality

of the POMDP solution, we instead consider (suboptimal) greedy utility-maximization

schemes. As justification for this approach, we first establish that the optimal util-

ity maximization strategy would itself be greedy if the BS had perfect CSI for all

user-subchannel combinations. Moreover, we establish that the performance of this

perfect-CSI (greedy) scheme upper-bounds the optimal ACK/NAK-feedback-based

(POMDP) scheme. We then propose a novel, greedy utility-maximization scheme

whose performance is shown (via the upper bound) to be close to optimal. Finally,

due to the computational demands of tracking the posterior channel distribution for

every user, we propose a low-complexity implementation based on particle filtering.
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The rest of the chapter is organized as follows. In Section 4.2, we discuss some

past related works. In Section 4.3, we outline the system model and, in Section 4.4,

we investigate the optimal scheduling and resource allocation scheme. Due to the

implementation complexity of the optimal scheme, we propose a suboptimal greedy

scheme in Section 4.5 that maintains posterior channel distributions inferred from

the received ACK/NAK feedback. In Section 4.6, we show how these posteriors

can be recursively updated via particle filtering. Numerical results are presented in

Section 4.7, and conclusions are stated in Section 4.8.

4.2 Past Work

We now describe the relation of our work to the existing literature [60–62]. In [60],

a learning-automata-based user/rate scheduling algorithm was proposed to maximize

system throughput based on ACK/NAK feedback while satisfying per-user through-

put constraints. While [60] considered a single channel, we consider joint user/rate

scheduling and power allocation in a multi-channel OFDMA setting. In [61], a state-

space-based approach was taken to jointly schedule users/rates and allocate powers in

downlink OFDMA systems under slow-fading channels in the presence of ACK/NAK

feedback and imperfect subchannel-gain estimates at the BS. In particular, assum-

ing a discrete channel model, goodput maximization was considered under a tar-

get maximum packet-error probability constraint and a sum-power constraint across

all time-slots. Its solution led to a POMDP which was solved using a dynamic-

program. While the approach in [61] is applicable to only goodput maximization

under discrete-state channels, ours is applicable to generic utility maximization prob-

lems under continuous-state channels. Furthermore, our approach is based on particle
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filtering and lends itself to practical implementation. In [62], the user/rate schedul-

ing and power allocation problem in OFDMA systems with quasi-static channels and

ACK/NAK feedback was formulated as a Markov Decision Process and an efficient

algorithm was proposed to maximize achievable sum-rate while maintaining a tar-

get packet-error-rate and a sum-power constraint over a finite time-horizon. Apart

from assuming a discrete-state quasi-static channel model, the scope of this work was

limited by two other assumptions: i) in each time-slot, the BS scheduled only one

user across all subchannels for data transmission, and ii) all users decoded the broad-

casted data-packet and sent ACK/NAK feedback to the BS. In contrast, we consider

the scenario where multi-user diversity is efficiently exploited by scheduling different

users across different subchannels, and only the scheduled users report ACK/NAK

feedback. Furthermore, we consider general utility maximization under continuous-

state time-varying channels, and propose a polynomial-complexity joint scheduling

and resource allocation scheme with provable performance guarantees.

4.3 System Model

We consider a packetized downlink OFDMA system with a pool ofK users. During

each time slot, the BS (i.e., “controller”) transmits packets of data, composed of

codewords from a generic signaling scheme, through N OFDMA subchannels (with

N≶K). Each packet propagates through a fading channel on the way to its intended

mobile user, where the fading channel is assumed to be time-invariant over the packet

duration, but is allowed to vary across packets in a Markovian manner. Henceforth,

we will use “time” when referring to the packet index. At each time-instant, the BS
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must decide—for each subchannel—which user to schedule, which modulation-and-

coding scheme (MCS) to use, and how much power to allocate.

We assume M choices of MCS, where the MCS index m ∈ {1, . . . ,M} corresponds

to a transmission rate of rm bits per packet and a packet error rate of the form

ǫ = ame
−bmPγ under transmit power P and squared subchannel gain (SSG) γ, where

am and bm are constants [33]. Let (n, k,m) represent the combination of user k and

MCS m over subchannel n. In the sequel, we use P t
n,k,m, γ

t
n,k, and ǫtn,k,m to denote—

respectively—the power allocated to, the SSG experienced by, and the error rate of

the combination (n, k,m) at time t. Additionally, we denote the scheduling decision

by I tn,k,m ∈ {0, 1}, where I tn,k,m = 1 indicates that user/rate (k,m) was scheduled on

subchannel n at time t, whereas I tn,k,m = 0 indicates otherwise. Since we assume that

only one user/rate (k,m) can be scheduled on a given subchannel n at a given time

t, we have the “subchannel resource” constraint
∑

k,m I tn,k,m 6 1 for all n, t. We also

assume a “sum-power constraint” of the form
∑

n,k,m I tn,k,mP t
n,k,m 6 Xcon for all t.

Our goal in scheduling and resource allocation is to maximize an expected long-

term utility criterion that is a function of the per-user/rate/subchannel goodputs,

i.e., E
{∑

n,k,m,tUn,k,m(g
t
n,k,m)

}
. Here, gtn,k,m denotes the goodput contributed by

user k with MCS m on subchannel n at time t, which can be expanded as gtn,k,m =

I tn,k,m(1− ǫtn,k,m)rm. Meanwhile, Un,k,m(·) is a generic utility function that we assume

(for technical reasons) is twice differentiable, strictly-increasing, and concave, with

Un,k,m(0) < ∞. We use Un,k,m(·) to transform goodput into other metrics that are

more meaningful from the perspective of quality-of-service (QoS), fairness [63], or

pricing (e.g., [26–28]). For example, to maximize sum-goodput, one would simply

use Un,k,m(x) = x. To enforce fairness across users, one could instead maximize
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weighted sum-goodput via Un,k,m(x) = wkx, where {wk} are appropriately chosen

user-dependent weights. To maximize sum capacity, i.e.,
∑

n,k I
t
n,k,1 log(1+P t

n,k,1γ
t
n,k),

one would choose M = a1 = b1 = r1 = 1 and Un,k,1(x) = log(1 − log(1 − x)) for

x ∈ [0, 1). To incorporate user-fairness into capacity maximization, one could instead

choose Un,k,1(·) = wk log(1− log(1− x)), where again {wk} are appropriately chosen

user-dependent weights [33].

For each time t, the BS performs scheduling and resource allocation based on pos-

terior distributions on the SSGs {γt
n,k} inferred from previously received ACK/NAK

feedback. In the sequel, we write the ACK/NAK feedback about the packet trans-

mitted to user k across subchannel n at time t by f t
n,k ∈ {1, 0, ∅}, where 1 indicates

an ACK, 0 indicates a NAK, and ∅ covers the case that user k was not scheduled on

subchannel n at time t. Thus, in the case of an infinite past horizon and a feedback

delay of d > 1 packets, the BS would have access to the feedbacks {f τ
n,k ∀n, k}t−d

τ=−∞

for time-t scheduling.

4.4 Optimal Scheduling and Resource Allocation

In this section, we describe the optimal solution to the problem of scheduling and

resource allocation over the finite time-horizon t ∈ {1, . . . , T}. For this purpose, some

additional notation will be useful. To denote the collection of all time-t scheduling

variables {I tn,k,m}, we use It ∈ {0, 1}NKM . To denote the collection of all time-t powers

{P t
n,k,m}, we use Pt ∈ [0,∞)NKM . To denote the collection of all time-t ACK/NAK

feedbacks {f t
n,k} we use Ft ∈ {1, 0, ∅}NK, and to denote the collection of all time-t

user-k feedbacks we use f tk ∈ {1, 0, ∅}N .
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For time-t scheduling and resource allocation, the controller has access to the pre-

vious feedback Ft−d
−∞ , {F−∞, . . . ,Ft−d}, scheduling decisions It−d

−∞ , {I−∞, . . . , It−d},

and power allocations Pt−d
−∞ , {P−∞, . . . ,Pt−d}. It then uses this knowledge to de-

termine the schedule It and power allocation pt maximizing the expected utility of

the current and remaining packets:

(It,opt,Pt,opt)

= argmax
(It,Pt)∈X

E

{
∑

n,k,m

I tn,k,mUn,k,m

(
(1− ame

−bmP t
n,k,mγt

n,k)rm
)

+

T∑

τ=t+1

Iτ,optn,k,mUn,k,m

(
(1− ame

−bmP τ,opt
n,k,mγτ

n,k)rm
)
∣
∣
∣
∣
Ft−d

−∞, It−d
−∞,Pt−d

−∞

}

, (4.1)

where the domain of It is I , {I ∈ {0, 1}NKM :
∑

k,m In,k,m 6 1 ∀n}, the domain of

Pt is P , [0,∞)NKM , and X , {(I,P) ∈ I × P :
∑

n,k,m In,k,m Pn,k,m 6 Xcon}. The

expectation in (4.1) is jointly over the squared subchannel gains (SSGs) {γτ
n,k : τ =

t, . . . , T, ∀n, ∀k}. Using the abbreviations Ũ t
n,k,m(In,k,m, Pn,k,m) , In,k,mUn,k,m

(
(1 −

ame
−bmPn,k,mγt

n,k)rm
)
and F

t−d
−∞ , {Ft−d

−∞, It−d
−∞,Pt−d

−∞}, the optimal expected utility over

the remaining packets {t, . . . , T} can be written (for t > 0) as

U t,opt
tot (Ft−d

−∞) , E

{ T∑

τ=t

∑

n,k,m

Ũ τ
n,k,m

(
Iτ,optn,k,m, P

τ,opt
n,k,m

)
∣
∣
∣
∣
F
t−d
−∞

}

. (4.2)

For a unit-delay15 system (i.e. d = 1), the following Bellman equation [49] specifies

the corresponding finite-horizon dynamic program:

U t,opt
tot (Ft−1

−∞) = max
(It,Pt)∈X

[

E
{ ∑

n,k,m

Ũ t
n,k,m

(
I tn,k,m, P

t
n,k,m

)
∣
∣
∣F

t−1
−∞

}

+ E
{

U t+1,opt
tot

(
F
t−1
−∞ ∪ {Ft, It,Pt}

)
∣
∣
∣F

t−1
−∞

}]

, (4.3)

15 For the d > 1 case, the Bellman equation is more complicated, and so we omit it for brevity.
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where the second expectation is over the feedbacks Ft. The solution obtained by

solving (4.1) is typically referred to as a partially observable Markov decision process

(POMDP) [59].

The definition of P implies that the controller has an uncountably infinite number

of possible actions. Although this could be circumvented (at the expense of perfor-

mance) by restricting the powers P t
n,k,m to come from a finite set, the problem would

remain very complex due to the continuous-state nature of the SSGs γt
n,k. While

these SSGs could then be quantized (causing additional performance loss), the prob-

lem would still remain computationally intensive, since POMDPs (even with finite

states and actions) are PSPACE-complete, i.e., they require both complexity and

memory that grow exponentially with the horizon T [64]. To see why, notice from

(4.3) that the solution of the problem at every time t depends on the optimal solution

at times up to t−1. Because both terms on the right side of (4.3) are dependent on

(It,Pt), however, the solution of the problem at time t also depends on the solution

of the problem at time t + 1, which in turn depends on the solution of the problem

at time t + 2, and so on. In conclusion, the optimal controller is not practical to

implement, even under power/SSG quantization.

Consequently, we will turn our attention to (sub-optimal) greedy strategies, i.e.,

those that do not consider the effect of current actions on future utilities. To better

understand their performance relative to that of the optimal POMDP, we derive an

upper bound on POMDP performance.
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4.4.1 The “Causal Global Genie” Upper Bound

Our POMDP-performance upper-bound, which we will refer to as the “causal

global genie” (CGG), is based on the presumption of perfect error-rate feedback of all

previous user/subchannel combinations, i.e., {ǫτn,k,m ∀n, k, τ 6 t−d}. For comparison,

the ACK/NAK feedback available to the POMDP is a form of degraded error-rate

feedback on previously scheduled user/subchannel combinations. Since, given knowl-

edge of ǫτn,k,m and P τ
n,k,m for any rate index m, the SSG γτ

n,k can be obtained by simply

inverting the error-rate expression ǫτn,k,m = ame
−bmP τ

n,k,mγτ
n,k , our genie-aided bound is

based, equivalently, on perfect feedback of all previous SSGs {γτ
n,k ∀n, k, τ 6 t − d}.

In the sequel, we use γt ∈ [0,∞)NK to denote the collection of all time-t SSGs

{γt
n,k ∀k, n}, and we define γt−d

−∞ , {γ−∞, . . . , γt−d}.

We characterize the CGG as “global” since it uses feedback from all user/subchannel

combinations, not just the previously scheduled ones. Although a tighter bound might

result if the (perfect) error-rate feedback was restricted to only previously scheduled

user/subchannel pairs, the bounding solution would remain a POMDP with an un-

countable number of state-action pairs, making it impractical to evaluate. Evalu-

ating the performance of the CGG, however, is straightforward since—under CGG

feedback—optimal scheduling and resource maximization can be performed greedily.

To see why, notice that, for any scheduling time t > 0, the CGG scheme allocates

resources according to the following mixed-integer optimization problem:

(It,cgg,Pt,cgg) = argmax
(It,Pt)∈X

∑

n,k,m

E

{

Ũ t
n,k,m

(
I tn,k,m, P

t
n,k,m

)

+
T∑

τ=t+1

Ũ τ
n,k,m

(
Iτ,cggn,k,m, P

τ,cgg
n,k,m

)
∣
∣
∣It−d

−∞,Pt−d
−∞, γt−d

−∞

}

. (4.4)
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Since the choice of
{
(It+1,cgg,Pt+1,cgg), . . . , (IT,cgg,PT,cgg)

}
does not depend on the

choice of (It,cgg,Pt,cgg), the previous optimization problem simplifies to

(It,cgg,Pt,cgg) = argmax
(It,Pt)∈X

∑

n,k,m

E
{

Ũ t
n,k,m

(
I tn,k,m, P

t
n,k,m

)∣∣
∣γt−d

−∞

}

. (4.5)

In the following lemma, we formally establish that the utility achieved by the

CGG upper-bounds that achieved by the optimal POMDP controller with ACK/NAK

feedback.

Lemma 7. Given arbitrary past allocations (It−d
−∞,Pt−d

−∞), and the corresponding ACK/NAKs
Ft−d

−∞, the expected total utility for optimal resource allocation under the latter feedback
is no higher than the expected total utility under CGG feedback, i.e.,

∑

n,k,m

T∑

τ=t

E
{

Ũ τ
n,k,m

(
Iτ,optn,k,m, P

τ,opt
n,k,m

)
∣
∣
∣F

t−d
−∞

}

6
∑

n,k,m

T∑

τ=t

E
{

Ũ τ
n,k,m

(
Iτ,cggn,k,m, P

τ,cgg
n,k,m

)
∣
∣
∣F

t−d
−∞

}

. (4.6)

Proof. For any τ ∈ {t, . . . , T} and any realization of (It−d
−∞,Pt−d

−∞), we can write

E
{ ∑

n,k,m

Ũ τ
n,k,m

(
Iτ,optn,k,m, P

τ,opt
n,k,m

)∣
∣F

t−d
−∞

}

6 argmax
(Iτ ,Pτ )∈X

E
{ ∑

n,k,m

Ũ τ
n,k,m

(
Iτn,k,m, P

τ
n,k,m

) ∣
∣F

t−d
−∞

}

(4.7)

= argmax
(Iτ ,Pτ )∈X

E

{

E
{ ∑

n,k,m

Ũ τ
n,k,m

(
Iτn,k,m, P

τ
n,k,m

) ∣
∣F

t−d
−∞, γt−d

−∞

} ∣
∣
∣F

t−d
−∞

}

(4.8)

6 E

{

argmax
(Iτ ,Pτ )∈X

E
{ ∑

n,k,m

Ũ τ
n,k,m

(
Iτn,k,m, P

τ
n,k,m

)
∣
∣
∣
∣
F
t−d
−∞, γt−d

−∞

} ∣
∣
∣F

t−d
−∞

}

(4.9)

= E

{

argmax
(Iτ ,Pτ )∈X

E
{ ∑

n,k,m

Ũ τ
n,k,m

(
Iτn,k,m, P

τ
n,k,m

) ∣
∣ It−d

−∞,Pt−d
−∞, γt−d

−∞

} ∣
∣
∣F

t−d
−∞

}

(4.10)

= E
{ ∑

n,k,m

Ũ τ
n,k,m

(
Iτ,cggn,k,m, P

τ,cgg
n,k,m

) ∣
∣F

t−d
−∞

}

, (4.11)

where (4.7) follows since (It,opt,Pt,opt) is chosen to maximize the long term sum-
utility—not the instantaneous sum-utility; (4.9) follows since maxy,z E{f(y, z)} 6
E{maxy,z f(y, z)} for any real-valued function f(·, ·); (4.10) follows by the definition
of degraded feedback; and (4.11) follows by definition of the causal global genie.
Finally, summing both sides of (4.11) over τ = {t, . . . , T} yields (4.6).
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In the next section, we detail the greedy scheduling and resource allocation prob-

lem and propose a near-optimal solution.

4.5 Greedy Scheduling and Resource Allocation

The greedy scheduling and resource allocation (GSRA) problem is defined as fol-

lows.

GSRA , max
It∈I
Pt∈P

N∑

n=1

K∑

k=1

M∑

m=1

I tn,k,mE
{

Un,k,m

(
(1− ame

−bmP t
n,k,mγt

n,k)rm
)
∣
∣
∣F

t−d
−∞

}

s.t.
∑

n,k,m

I tn,k,mP t
n,k,m 6 Xcon. (4.12)

Note that, in contrast to the T -horizon objective (4.1), the greedy objective (4.12)

does not consider the effect of (It,Pt) on future utility. As stated earlier, we allow

Un,k,m(·) to be any real-valued function that is twice differentiable, strictly-increasing,

and concave, with Un,k,m(0) <∞. Therefore, U ′
n,k,m(·) > 0 and U ′′

n,k,m(·) 6 0, using ′

to denote the derivative.

Since it involves both discrete (It) and continuous (Pt) optimization variables, the

GSRA problem (4.12) is a mixed-integer optimization problem. Such problems are

generally NP-hard, meaning that polynomial-complexity solutions do not exist. Thus,

in Section 4.5.2, we propose a near -optimal algorithm for (4.12) with polynomial

complexity. To better explain that scheme, we first describe, in Section 4.5.1, a “brute

force” optimal solution whose complexity grows exponentially in N , the number of

subchannels.

4.5.1 Brute-Force Algorithm

The brute-force approach considers all possibilities of It ∈ I, each with the cor-

responding optimal power allocation. Supposing that It = I, the optimal power
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allocation can be found by solving the convex optimization problem

max
P∈P

N∑

n=1

K∑

k=1

M∑

m=1

In,k,mE
{

Un,k,m

(
(1− ame

−bmPn,k,mγt
n,k)rm

)∣∣
∣F

t−d
−∞

}

s.t.
∑

n,k,m

In,k,m Pn,k,m 6 Xcon. (4.13)

To proceed, we identify the Lagrangian associated with (4.13) as

Lt
I(µ,P) =

( ∑

n,k,m

In,k,mPn,k,m −Xcon

)

µ

−
∑

n,k,m

E
{

In,k,mUn,k,m

(
(1− ame

−bmPn,k,mγt
n,k)rm

)
∣
∣
∣F

t−d
−∞

}

, (4.14)

which yields the corresponding dual problem

max
µ>0

min
P∈P

Lt
I(µ,P) = max

µ>0
Lt
I(µ,P

∗(µ)) = Lt
I(µ

∗
I ,P

∗(µ∗
I)), (4.15)

where µ∗
I and P∗(µ∗

I) denote the optimal Lagrange multiplier and power allocation,

respectively.

A detailed solution to (4.15) is given in Chapter 3, and so we describe only the

main points here. First, for a given value of the Lagrange multiplier µ, it has been

shown that the optimal powers equal

P ∗
n,k,m(µ) =

{

P̃n,k,m(µ) if 0 6 µ 6 ambmrmU
′
n,k,m

(
(1− am)rm

)
E
{
γt
n,k

∣
∣F

t−d
−∞
}

0 otherwise,
(4.16)

where P̃n,k,m(µ) is defined as the (unique) solution to

µ = ambmrm E
{
U ′
n,k,m

(
(1− ame

−bmP̃n,k,m(µ)γt
n,k )rm

)
γt
n,ke

−bmP̃n,k,m(µ)γt
n,k

∣
∣F

t−d
−∞
}
.

(4.17)
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Then, for a given I, the optimal value of µ (i.e., µ∗
I) obeys µ

∗
I ∈ [µmin, µmax] ⊂ (0,∞),

where

µmin = min
n,k,m

ambmrm E
{
U ′
n,k,m

(
(1− ame

−bmXconγt
n,k)rm

)
γt
n,ke

−bmXconγt
n,k

∣
∣F

t−d
−∞
}
,

(4.18)

µmax = max
n,k,m

ambmrmU
′
n,k,m

(
(1− am)rm

)
E
{
γt
n,k

∣
∣F

t−d
−∞
}
, (4.19)

and satisfies
∑

n,k,m In,k,m P ∗
n,k,m(µ

∗
I) = Xcon.

Based on (4.16)-(4.19), Table 4.1 details the brute-force steps for a given I. In the

end, for a specified tolerance κ, these steps find µ and µ̄ such that µ∗
I ∈ [µ, µ̄] and

µ̄− µ < κ. Using an approximation of µ∗
I that lies in [µ, µ̄], the corresponding utility

is guaranteed to be no less than κXcon from the optimal (for the given I). Therefore,

by adjusting κ, one can achieve a performance arbitrarily close to the optimum. Since

|I| = (KM + 1)N values of I must be considered, the total complexity of the brute-

force approach—in terms of the number of times (4.17) must be solved—can be shown

to be

⌈
log2(

µmax−µmin

κ
)
⌉
× (KM + 1)N−1NKM, (4.20)

which grows exponentially with N .

4.5.2 Proposed Algorithm

We propose to attack the mixed-integer GSRA problem (4.12) using the well

known Lagrangian relaxation approach [49]. In doing so, we relax the domain of

the scheduling variables I tn,k,m from the set {0, 1} to the interval [0, 1], allowing the

application of low-complexity dual optimization techniques. Although the solution

to the relaxed problem does not necessarily coincide with that of the original greedy
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Table 4.1: Brute-force steps for a given I

1. Initialize µ = µmin and µ̄ = µmax.

2. Set µ =
µ+µ̄

2 .

3. For each (n, k,m),

(a) Use (4.16)-(4.17) to obtain P ∗
n,k,m(µ).

4. Calculate X∗
tot(I, µ) ,

∑

n,k,m In,k,m P ∗
n,k,m(µ).

5. If X∗
tot(I, µ) > Xcon , set µ = µ, otherwise set µ̄ = µ.

6. If µ̄− µ > κ, go to step 2), else proceed to step 7).

7. If X∗
tot(I, µ̄) 6= X∗

tot(I, µ), set λ =
X∗

tot(I,µ)−Xcon

X∗

tot(I,µ)−X∗

tot(I,µ̄)
, otherwise set λ = 0.

8. Set µ̂I = µ̄. The best power allocation is given by P̂ (I) = λP∗(µ̄) + (1 − λ)P∗(µ), and

L̂I = Lt
I
(µ̄, P̂ (I)) gives the best Lagrangian value.

problem (4.12), we establish in the sequel that the corresponding performance loss is

very small, and in some cases zero.

The relaxed version of the greedy problem (4.12) is

rGSRA , max
It∈Ic
Pt∈P

N∑

n=1

K∑

k=1

M∑

m=1

I tn,k,mE
{

Un,k,m

(
(1− ame

−bmP t
n,k,mγn,k)rm

)
∣
∣
∣F

t−d
−∞

}

s.t.
∑

n,k,m

I tn,k,mP t
n,k,m 6 Xcon, (4.21)

where Ic ,
{
I ∈ [0, 1]NKM :

∑

k,m In,k,m 6 1 ∀n
}
. Although (4.21) is a non-

convex optimization problem due to non-convex constraints, it can be converted

into a convex optimization problem by using the new set of variables (It,xt), where

xt
n,k,m , I tn,k,m P t

n,k,m. In this case, we have

rGSRA = min
xt�0

It∈Ic

∑

n,k,m

I tn,k,mBt
n,k,m(I

t
n,k,m, x

t
n,k,m) s.t.

∑

n,k,m

xt
n,k,m 6 Xcon, (4.22)
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where xt ∈ R
NKM denotes the collection of all time-t variables {xt

n,k,m}, xt � 0

denotes element-wise non-negativity, and Bt
n,k,m(·, ·) is defined as

Bt
n,k,m(y1, y2) ,

{

−E
{

Un,k,m

(
(1− ame

−bmγt
n,k y2/y1)rm

)
∣
∣
∣F

t−d
−∞

}

if y1 6= 0

0 otherwise.
(4.23)

The modified problem (4.22) is a convex optimization problem and can be solved

using a dual optimization approach with zero duality gap. In particular, the dual

problem can be written as

max
µ>0

min
xt�0

It∈Ic

L(µ, It,xt) = max
µ>0

min
It∈Ic

L(µ, It,xt,∗(µ, It))

= max
µ>0

L(µ, It,∗(µ),xt,∗(µ, It,∗(µ))) = L(µ∗, It,∗(µ∗),xt,∗(µ∗, It,∗(µ∗))), (4.24)

where

L(µ, It,xt) ,
∑

n,k,m

I tn,k,mBt
n,k,m(I

t
n,k,m, x

t
n,k,m) +

( ∑

n,k,m

xt
n,k,m −Xcon

)

µ, (4.25)

where x∗(µ, I) is the optimal x for a given (µ, I), where I∗(µ) denotes the optimal

I ∈ Ic for a given µ, and where µ∗ denotes the optimal µ > 0.

A detailed solution to this problem is given in Chapter 3, and so we describe

only the main points here. For given values of µ and It, we have xt,∗
n,k,m(µ, I

t) =

I tn,k,m P t,∗
n,k,m(µ), where

P t,∗
n,k,m(µ) =

{

P̃ t
n,k,m(µ) if 0 6 µ 6 ambmrmU

′
n,k,m

(
(1− am)rm

)
E
{
γt
n,k

∣
∣F

t−d
−∞
}

0 otherwise,
(4.26)

and where P̃ t
n,k,m(µ) is defined as the (unique) solution to

µ = ambmrm E
{
U ′
n,k,m

(
(1− ame

−bmP̃ t
n,k,m(µ)γt

n,k )rm
)
γt
n,ke

−bmP̃ t
n,k,m(µ)γt

n,k

∣
∣F

t−d
−∞
}
.

(4.27)
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To give equations that govern It,∗(µ) for a given µ, we first define

V t
n,k,m(µ, P

t,∗
n,k,m(µ)) , −E

{

Un,k,m

(
(1− ame

−bmP t,∗
n,k,m(µ)γn,k)rm

)∣
∣F

t−d
−∞

}

+ µP ∗
n,k,m(µ) (4.28)

and

St
n(µ) ,

{

(k,m) = argmin
(k′,m′)

V t
n,k′,m′(µ, P

t,∗
n,k′,m′(µ)) : V

t
n,k,m(µ, P

t,∗
n,k,m(µ)) 6 0

}

.

(4.29)

If St
n(µ) is a null or a singleton set, then the optimal schedule on subchannel n is

given by

I t,∗n,k,m(µ) =

{

1 (k,m) ∈ St
n(µ)

0 otherwise.
(4.30)

However, if St
n(µ) has cardinality greater than one, then multiple (k,m) combinations

can be scheduled simultaneously while achieving the optimal value of the Lagrangian.

In particular, if St
n(µ) = {(k1(n), m1(n)), . . . , (k|St

n(µ)|(n), m|St
n(µ)|(n))}, then

I t,∗n,k,m(µ) =

{

In,ki(n),mi(n) if (k,m) = (ki(n), mi(n)) for some i ∈ {1, . . . , |St
n(µ)|}

0 otherwise,
(4.31)

where the vector
[
In,k1(n),m1(n), . . . , In,k|St

n(µ)|(n),m|St
n(µ)|(n)

]
lies anywhere in the unit-

(|St
n(µ)|−1) simplex, i.e., it lies within the region [0, 1]|S

t
n(µ)| and satisfies the equation

∑|St
n(µ)|

i=1 In,ki(n),mi(n) = 1. Finally, the optimal Lagrange multiplier µ (i.e., µ∗) is such

that µ∗ ∈ [µmin, µmax] ⊂ (0,∞) and

∑

n,k,m

I t,∗n,k,m(µ
∗)P t,∗

n,k,m(µ
∗) = Xcon, (4.32)

where µmin and µmax were given in (4.18) and (4.19), respectively.
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For several fixed values of µ, the proposed algorithm minimizes the relaxed La-

grangian (4.25) over (It,xt) (or, equivalently, over (It,Pt)) to obtain candidate solu-

tions for the original greedy problem (4.12). If, for a given µ, |St
n(µ)| 6 1 for all n

(i.e., the candidate employs at most one user/MCS per subchannel), then the can-

didate solution is admissible for the non-relaxed problem, and thus retained by the

proposed algorithm. If, on the other hand, |St
n(µ)| > 1 for some n (i.e., the can-

didate employs more than one user/MCS on some subchannels), then the proposed

algorithm transforms the candidate into an admissible solution as follows:

I t,pron,k,m(µ) =

{

1 (k,m) = argmin(k′,m′)∈St
n(µ)

P t,∗
n,k′,m′(µ)

0 otherwise.
(4.33)

The following lemma then states an important property of these fixed-µ admissible

solutions.

Lemma 8. For any given value of µ, let the power allocation Pt,∗(µ) be given by
(4.26), let the user-MCS allocation It,pro(µ) be given by (4.33), and let the total power
allocation be defined as X t,pro

tot (µ) ,
∑

n,k,m I t,pron,k,m(µ)P
t,∗
n,k,m(µ). Then, X t,pro

tot (µ) is
monotonically decreasing in µ.

Lemma 8 (see Chapter 3 for a proof) implies that the optimal value of the La-

grange multiplier µ (i.e., µ∗) is the one that achieves the power constraint X t,pro
tot (µ) =

Xcon. To find this µ∗, the proposed algorithm performs a bisection search over

µ ∈ [µmin, µmax] that refines the search interval [µ, µ̄] until µ̄ − µ < κ, where κ is

a user-defined tolerance. Then, between the two schedules I ∈ {It,pro(µ), It,pro(µ̄)},

it chooses the one that maximizes utility, reminiscent of the brute-force algorithm.

Table 4.2 summarizes the proposed algorithm.

The complexity of the proposed algorithm—in terms of number of times (4.27) is

solved—is

⌈
log2(

µmax−µmin

κ
)
⌉
×N(KM + 2), (4.34)
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Table 4.2: Proposed greedy algorithm

1. Initialize µ = µmin and µ̄ = µmax.

2. Set µ =
µ+µ̄

2 .

3. For each subchannel n = 1, . . . , N :

(a) For each (k,m),

i. Use (4.26)-(4.27) to calculate P
t,∗
n,k,m(µ).

ii. Use P
t,∗
n,k,m(µ) to calculate V t

n,k,m(µ, P t,∗
n,k,m(µ)) via (4.28).

(b) Calculate St
n(µ) using (4.29).

4. Find It,pro(µ) using (4.33).

5. Calculate X
t,pro
tot (µ) =

∑

n,k,m I
t,pro
n,k,m(µ)P t,∗

n,k,m(µ).

6. If Xt,pro
tot (µ) > Xcon, set µ = µ, otherwise set µ̄ = µ.

7. If µ̄− µ > κ, go to step 2), else proceed to step 8).

8. Now we have µ∗ ∈ [µ, µ̄] and µ̄ − µ < κ. For both I = It,pro(µ) and I = It,pro(µ̄) (since they

may differ), calculate P̂ (I) and L̂I as described for the brute force algorithm.

9. Choose Î
t
= argmin

I∈{It,pro(µ), It,pro(µ̄)} L̂I as the user-MCS allocation and P̂
t
= P̂ (Î

t
) as the

associated power allocation.

which is significantly less than the brute-force complexity in (4.20). Although the

proposed algorithm is sub-optimal, the difference between the optimal GSRA utility

U∗
GSRA and that attained by the proposed algorithm ÛGSRA(µ, µ̄), as µ → µ̄, can be

bounded as follows (see Chapter 3 for details):

U∗
GSRA − lim

µ→µ̄
ÛGSRA(µ, µ̄) 6 (µ∗ − µmin)

(
Xcon −X t,pro

tot (µ∗)
)

(4.35)

6

{

0 if |Sn(µ
∗)| 6 1 ∀n

(µmax − µmin)Xcon otherwise.
(4.36)

In Section 4.7, we evaluate (4.35) by simulation, and show that the performance loss

is negligible.
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4.6 Updating the Posterior Distributions from ACK/NAK
Feedback

In this section, we propose a recursive procedure to compute the posterior pdfs

p(γt
n,k |Ft−d

−∞) required by the proposed greedy algorithm in Table 4.2 when the channel

is first-order16 Markov.

Let the time-t user-k channel be described by the discrete-time channel impulse

response ht
k , [ht

1,k, . . . , h
t
L,k]

⊺ ∈ CL, where (·)⊺ denotes transpose. The corresponding

frequency-domain subchannel gains Ht
k , [H t

1,k, . . . , H
t
N,k]

⊺ ∈ CN are then given by

Ht
k = Ght

k, (4.37)

where the OFDMA modulation matrix G ∈ CN×L contains the first L columns of

the N -DFT matrix. Assuming additive white Gaussian noise with unit variance, the

SSG of subchannel n for user k is given by γt
n,k = |H t

n,k|2, and so we can write

p(γt
n,k |Ft−d

−∞) =

∫

ht
k

p(γt
n,k |ht

k)p(h
t
k |Ft−d

−∞) (4.38)

with p(γt
n,k |ht

k) = δ(γt
n,k − |e⊺nGht

k|2), where δ(·) is the Dirac delta and en is the nth

column of the identity matrix. Using the channel’s Markov property and Bayes rule,

we find that

p(ht
k |Ft−d

−∞) =

∫

h
t−d
k

p(ht
k |ht−d

k ) p(ht−d
k |Ft−d

−∞) (4.39)

p(ht−d
k |Ft−d

−∞) =
p(f t−d

k |ht−d
k ,Ft−d

−∞ \ f t−d
k ) p(ht−d

k |Ft−d
−∞ \ f t−d

k )
∫

h̄t−d
k

p(f t−d
k | h̄t−d

k ,Ft−d
−∞ \ f t−d

k ) p(h̄t−d
k |Ft−d

−∞ \ f t−d
k )

, (4.40)

where \ denotes the set-difference operator. Using the fact that p(f t−d
k |ht−d

k ,Ft−d
−∞ \

f t−d
k ) = p(f t−d

k |ht−d
k , It−d,pt−d), along with the fact that (It−d,pt−d) is a deterministic

16 The extension to higher-order Markov channels is straightforward.
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function of Ft−2d
−∞ (and therefore of Ft−d−1

−∞ ), we then have from (4.40) that

p(ht−d
k |Ft−d

−∞) =
p(f t−d

k |ht−d
k , It−d,pt−d) p(ht−d

k |Ft−d−1
−∞ )

∫

h̄
t−d
k

p(f t−d
k | h̄t−d

k , It−d,pt−d) p(h̄t−d
k |Ft−d−1

−∞ )
. (4.41)

Using the Markov property again, we get

p(ht−d
k |Ft−d−1

−∞ ) =

∫

h
t−d−1
k

p(ht−d
k |ht−d−1

k ) p(ht−d−1
k |Ft−d−1

−∞ ). (4.42)

Recall that f t
n,k, the feedback received about user k on channel n at time t, takes

values from the set {0, 1, ∅}, where 0 denotes a NAK, 1 denotes an ACK, and ∅

denotes no feedback. Here, f t
n,k is set to ∅ if user k was not scheduled on subchannel

n at time t. Assuming that, conditioned on ht
k, the feedbacks generated by user k are

independent across subchannels, we have

p(f tk|ht
k, I

t,pt) =

N∏

n=1

p(f t
n,k|ht

k, I
t,pt), (4.43)

p(f t
n,k = f |ht

k, I
t,pt) =







∑

m I tn,k,mame
−bmptn,k,mγt

n,k if f = 0
∑

m I tn,k,m

(

1− ame
−bmptn,k,mγt

n,k

)

if f = 1

1−∑m I tn,k,m if f = ∅,
(4.44)

where γt
n,k = |H t

n,k|2 can be determined from ht
k via (4.37). Together, (4.38)-(4.44)

suggest a method of recursively updating the channel distributions, using the new

feedback obtained at each time t, which is given in Table 4.3.

We now propose the use of particle filtering [65] to circumvent the evaluation of

multidimensional integrals in the recursion of Table 4.3. Particle filtering is a well-

known technique that approximates the pdf of a random variable using a suitably

chosen probability mass function (pmf). In the sequel, for simplicity of illustrations,

we assume a Gauss-Markov model of the form

ht+1
l,k = (1− α)ht

l,k + αwt
l,k, (4.45)
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Table 4.3: Recursive update of channel posteriors

At time t, for each user k, the pdf p(ht−d−1
k |Ft−d−1

−∞ ) is available from the previous time-instant.
The user-k recursion is then

1. Observe new feedbacks f t−d
k ∈ {0, 1, ∅}N .

2. Compute p(ht−d
k |Ft−d−1

−∞ ) using (4.42).

3. Compute p(f t−d
k |ht−d

k , It−d,Pt−d) using the error-rate rule (4.43)-(4.44).

4. Using the distributions obtained in steps 2) and 3), compute p(ht−d
k |Ft−d

−∞) via Bayes-rule
step in (4.41).

5. Compute p(ht
k |Ft−d

−∞) using the Markov-prediction step (4.39).

6. For each n, compute p(γt
n,k |Ft−d

−∞) via (4.38).

where wt
l,k is unit-variance circular Gaussian and α ∈ (0, 1] is a known constant that

determines the fading rate. Here, wt
l,k is assumed to be i.i.d. for all t, l, k. At each

time-step t, for k ∈ {1, . . .K}, we use S particles in the approximations

p(ht
k |Ft−d

−∞) ≈
S∑

i=1

ν
t | t−d
k [i] δ(ht

k − ht
k[i]), and

p(ht−d
k |Ft−d

−∞) ≈
S∑

i=1

ν
t−d | t−d
k [i] δ(ht−d

k − ht−d
k [i]), (4.46)

where ht
k[i] =

[
ht
1,k[i], . . . , h

t
L,k[i]

]⊺ ∈ CL denotes the ith (vector) particle, for i ∈

{1, . . . , S}, and ν
t1|t2
k [i] ∈ R+ is the probability mass assigned to the particle ht1

k [i]

based on the observations received up to time t2. The steps to recursively compute

these particles and their corresponding weights are detailed in Table 4.4.

Using the approximation in (4.46), we note that the expectation of any function

of subchannel-gain, ht
k, can be found using

E{A(ht
k)} ≈

∑

i

ν
t | t−d
k [i]A

(
ht
k[i]
)
, (4.47)

where A(·) is an arbitrary function. Recalling that the SSG γt
n,k is a deterministic

function of the subchannel-gain, ht
k, any function of γt

n,k is also a function of ht
k.
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4.7 Numerical Results

In this section, we numerically evaluate the performance of the proposed greedy

scheduling and resource allocation from Section 4.5 with the posterior update from

Section 4.6. For this, we consider an OFDMA system with independent first-order

Gauss-Markov channels (4.45). We assumed, if not otherwise stated, K = 8 available

users, N = 32 OFDMA subchannels, channel fading parameter α = 10−3 and impulse

response length L = 2. We used the modulation matrix G =
√
βF ∈ CN×L (recall

(4.37)), where F contains the first L(6 N) columns of the unitary N -DFT matrix

and β = N
L

2−α
α

ensures that the variance of H t
n,k is unity for all (n, k). Thus, the

mean of the SSG γt
n,k was also unity for all (n, k). Since the subchannel-averaged

total transmit power equals 1
N

∑

n,k,m I tn,k,mP
t
n,k,m = 1

N

∑

n,k,mX t
n,k,m = Xcon/N ,

it is readily seen that the average per-subchannel signal-to-noise ratio is SNR ,

E{ 1
N

∑

n,k,mX t
n,k,mγ

t
n,k} = 1

N

∑

n,k,mX t
n,k,mE{γt

n,k} = Xcon/N . For the plots, we av-

eraged 500 realizations, each with 100 time-slots. Of these 100 time-slots, the first 50

were ignored to avoid transient effects.

For illustrative purposes, we assumed uncoded 2m+1-QAM signaling with MCS

index m ∈ {1, . . . , 15}. In this case, we have rm = m + 1 bits per symbol, one

symbol per “codeword,” and one codeword per packet. In the packet error-rate model

ǫ = ame
−bmPγ, we assumed am = 1 and bm = 1.5/(2m+1−1) because the symbol error-

rate of a 2m+1-QAM system is well approximated by exp(−1.5Pγ/(2m+1− 1)) in the

high-(Pγ) regime [51] and is ≈ 1 when Pγ = 0. Throughout, we used the identity

utility (i.e., Un,k,m(x) = x for all n, k,m) so that the objective was maximization of

sum goodput, and we assumed a feedback delay of d = 1.
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The performance of the proposed greedy algorithm was compared to three ref-

erence schemes: fixed-power random user scheduling (FP-RUS), the “causal global

genie” (CGG), and the “non-causal global genie” (NCGG). The FP-RUS scheme

schedules users uniformly at random, allocates power uniformly across subchannels,

and selects the MCS to maximize expected goodput. The FP-RUS, which makes

no use of feedback, should perform no better than any feedback-based scheme. The

CGG (recall Section 4.4.1) performs optimal scheduling and resource allocation under

perfect knowledge of all SSGs at the previous time-instant (since d = 1), i.e., given

{γt−1
n,k ∀n, k} at time t. From Lemma 7, we know that the CGG upper-bounds the

POMDP. The NCGG is similar to the CGG, but assumes perfect knowledge of all

SSGs at all times, i.e., given {γτ
n,k ∀n, k, τ} at time t. Thus, it provides an upper

bound on the CGG that is invariant to fading rate α. The NCGG has a greedy

implementation, like the CGG, but without the conditional expectation in (4.5).

Figure 4.1 shows a typical realization of instantaneous sum-goodput versus time

t, when α = 10−3. There, one can see a large gap between the FP-RUS and the

CGG, and a much smaller gap between the CGG and the NCGG. The proposed

scheme starts without CSI, and initially performs no better than the FP-RUS. From

ACK/NAK feedbacks, however, it quickly learns the CSI well enough to perform

scheduling and resource allocation at a level that yields sum-goodput much closer to

the CGG than to the FP-RUS.

Figure 4.2 plots average sum-goodput versus the number of particles S used to

update the posterior distributions in the proposed greedy scheme (recall Section 4.6).

There we see that the performance of the proposed scheme increases with S, but shows

little improvement for S > 30. Thus, S = 30 particles were used to construct the
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Figure 4.1: Typical instantaneous sum-goodput versus time t. Here, N = 32, K = 8,
SNR = 10dB, α = 10−3, and S = 30.

other plots. Remarkably, with only S = 5 particles, the proposed algorithm captures

a significant portion of the maximum possible goodput gain over the FP-RUS.

Figure 4.3 plots average sum-goodput versus the fading rate α. There we see that,

at low fading rates (i.e., small α), the proposed greedy scheme achieves an average

sum-goodput that is much higher than the FP-RUS and, in fact, not far from the

CGG upper bound. For instance, at α = 10−4, the sum-goodput attained by the

proposed scheme is 92% of the upper bound and 170% of that attained by the FP-

RUS. As the fading rate α increases, we see that the sum-goodput attained by the

proposed scheme decreases, and eventually converges to that of the FP-RUS. This

behavior is due to the fact that, as α increases, it becomes more difficult to predict

the SSGs using delayed ACK/NAK feedback, thereby compromising the scheduling-

and-resource-allocation decisions that are made based on the predicted SSGs. In fact,
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Figure 4.2: Average sum-goodput versus the number of particles used to update the
channel posteriors. Here, N = 32, K = 8, SNR = 10dB, and α = 10−3.

one can even observe a gap between the CGG and NCGG for large α because, even

with delayed perfect-SSG feedback, the current SSGs are difficult to predict.

Figure 4.3 reveals a gap between the proposed scheme and the CGG bound that

persists as α → 0. This non-vanishing gap can be attributed—at least in part—

to greedy scheduling under ACK/NAK feedback. Intuitively, we have the following

explanation. Because the inferred SSG-distributions of not-recently-scheduled users

quickly revert to their a priori form, the proposed greedy algorithm will continue to

schedule users as long as their SSGs remain better than the a priori value. There

may exist, however, not-recently-scheduled users with far better SSGs who remain

invisible to the proposed scheme, only because they have not recently been scheduled.

Figures 4.4 and 4.5 plot average sum-goodput versus the number of subchannels

(i.e., total bandwidth) N . In Fig. 4.4, the total BS power Xcon is scaled with N such
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Figure 4.3: Average sum-goodput versus fading rate α. Here, N = 32, K = 8,
SNR = 10dB, and S = 30.

that the per-subchannel SNR remains fixed at 10dB, whereas, in Fig. 4.5, the total BS

power Xcon remains invariant to the bandwidth N , and is set such that per-subchannel

SNR = 10dB for N = 32. In both cases, the average sum-goodput increases with

bandwidth N , as expected, since the availability of more subchannels increases not

only scheduling flexibility, but also the possibility of stronger subchannels, which can

be exploited by the BS. In Fig. 4.4, where the per-subchannel SNR is fixed, the sum-

goodput increases linearly with bandwidth N , as expected. In all cases, the proposed

greedy scheme achieves more than 155% of the sum-goodput achieved by the FP-RUS.

Figure 4.6 plots average sum-goodput versus the number of available users K. It

shows that, as K increases, the average sum-goodputs achieved by the NCGG, CGG,

and the proposed greedy schemes increase, whereas that achieved by the FP-RUS
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Figure 4.4: Average sum-goodput versus number of subchannels N . Here, K = 8,
SNR = 10dB, α = 10−3, and S = 30.

remains constant. This behavior results because, with the former schemes, the avail-

ability of more users can be exploited to schedule users with stronger subchannels,

whereas with the FP-RUS scheme, this advantage is lost due to the complete lack of

information about the users’ instantaneous channel conditions. Figure 4.6 also sug-

gests that, as K increases, the sum-goodput of the proposed greedy scheme saturates.

This can be attributed to the fact that the proposed greedy algorithm can only track

the channels of recently scheduled users, and thus cannot benefit directly from the

growing pool of not-recently-scheduled users.

In Figure 4.7, the top subplot shows average sum-goodput versus SNR, while the

bottom subplot shows the average value of the bound (4.35) on the optimality gap of

our proposed approach to the GSRA problem, also versus SNR. The top plot shows

that, as the SNR increases, the proposed greedy scheme continues to perform much
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Figure 4.5: Average sum-goodput versus number of subchannels N . Here, K = 8,
Xcon does not scale with N and it is chosen such that SNR = 10dB for N = 32,
α = 10−3, and S = 30.

closer to the NCGG/CGG bounds than it does to the FP-RUS scheme. The bottom

plot establishes that the sum-goodput loss due to the sub-optimality in the algorithm

used to attack the GSRA problem is negligible, e.g., at most 0.0025% over all SNR.

4.8 Summary

In this chapter, we considered the problem of joint scheduling and resource allo-

cation in the OFDMA downlink under ACK/NAK feedback, with the goal of max-

imizing an expected long-term goodput-based utility subject to an instantaneous

sum-power constraint. First, we established that the optimal solution to the problem

is a partially observable Markov decision process (POMDP), which is impractical to

implement. Consequently, we proposed a greedy approach to joint scheduling and
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Figure 4.6: Average sum-goodput versus number of users. In this plot, N = 32,
SNR = 10dB, α = 10−3, and S = 30.

resource allocation based on the posterior distributions of the squared subchannel

gain (SSG) for every user/subchannel pair, which has polynomial complexity. Next,

for Markov channels, we outlined a recursive method to update the posterior SSG

distributions from the ACK/NAK feedbacks received at each time-slot, and proposed

an efficient implementation based on particle filtering. To gauge the performance of

our greedy scheme relative to that of the optimal POMDP (which is impossible to

implement), we derived a performance upper-bound on POMDP, known as the causal

global genie (CGG). Numerical experiments suggest that our greedy scheme achieves

a significant fraction of the maximum possible performance gain over fixed-power

random user scheduling (FP-RUS), despite its low-complexity implementation. For

example, a representative simulation using N = 32 OFDMA subchannels, K = 8

available users, SNR= 10dB, and S = 30 particles, shows that the sum-goodput of
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Figure 4.7: The top plot shows the average sum-goodput as a function of SNR. The
bottom plot shows the average bound on the optimality gap between the proposed and
optimal greedy solutions (given in (4.35)), i.e., the average value of (µ∗−µmin)(Xcon−
X∗

tot(I
min, µ∗)). In this plot, N = 32, K = 8, α = 10−3, and S = 30.

the proposed scheme is 92% of the upper bound and 170% of that attained by the

FP-RUS (see Fig. 4.3).
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Table 4.4: Particle filtering steps

Let the system begin at time-instant t0. If t ∈ {t0, . . . , t0 + d− 1}:
1. Initialize {ht

l,k[i] ∀i, k, l} by drawing i.i.d. samples from CN (0, α
2−α

).

2. Set the importance weights ν
t|t
k [i] = 1

S
∀k, i.

For any other time-instant t (> t0 + d):

1. Using the previous samples {hτ
l,k[i] ∀l, k, i, τ : τ 6 t − d}, obtain new samples according to

the underlying Markov model as follows

ht
l,k[i] = (1− α)d ht−d

l,k [i] + α

d−1∑

j=0

(1 − α)j yt−j
l,k [i], ∀i, l, k,

where y
t−j
l,k [i] is drawn i.i.d from CN (0, 1) for all i, l, k, j.

2. For each user k,

(a) Using the received feedbacks f t−d
k and the set of importance weights from time (t−d−1),

i.e., {νt−d−1|t−d−1
k [i] ∀i}, compute the new set of importance weights at time (t − d)

using

ν
t−d|t−d

k [i] = ν
t−d−1|t−d−1
k [i]× p

(
f t−d
k

∣
∣ht−d

k = ht−d
k [i], It−d,Pt−d

)
,

for all i, where p
(
f t−d
k

∣
∣ht−d

k = ht−d
k [i], It−d,Pt−d

)
is given by (4.43)-(4.44).

(b) Normalize the weights via

ν
t−d|t−d

k [i]← ν
t−d|t−d

k [i]
∑

j ν
t−d|t−d

k [j]
∀i.

(c) Compute the weights for the posterior distribution, p(ht
k |Ft−d

−∞) using

ν
t|t−d

k [i] =
S∑

j=1

ν
t−d|t−d

k [j] p(ht
k = ht

k[i]
∣
∣ht−d

k = ht−d
k [j]).

(d) Normalize the weights via

ν
t|t−d

k [i]← ν
t|t−d

k [i]
∑

j ν
t|t−d

k [j]
∀i.
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Chapter 5: Large Scale Wireless OFDMA System Design

5.1 Introduction

In Chapters 2-4, we studied some aspects of point-to-point systems and single-

transmitter multiple-receiver (OFDMA) systems that are useful in efficient system

design. In this chapter, we focus our attention on multiple-transmitter multi-receiver

systems.

With the widespread usage of smart phones and an increasing demand for nu-

merous mobile applications, wireless cellular/dense networks have grown significantly

in size and complexity. Consequently, the decisions regarding the deployment of

transmitters (base-stations, femtocells, picocells etc.), the maximum number of users

(subscribers), the amount to be spent on purchasing more bandwidth, and the revenue

model to choose have become much more complicated for service providers. Under-

standing the performance limits of large wireless networks and the optimal balance

between the number of serving transmitters, the number of subscribers, the number

of antennas used for physical-layer communication, and the amount of available band-

width to achieve those limits are critical components of the decisions made. Given

that the most significant fraction of the performance growth of wireless networks in
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the last few decades is associated [66] with cell sizes (that affect interference man-

agement schemes) and the amount of available bandwidth, the aforementioned issues

become more important.

To answer some of the above questions, we analyze the expected achievable down-

link sum-rate in large OFDMA systems as a function of the number of transmitters

B, users K, available resource-blocks N , and/or co-located antennas at each trans-

mitter M . Here, a resource block is a collection of subcarriers such that all disjoint

sub-collections have associated independently fading channels. Using our analysis,

we make the following contributions:

• For a general spatial geometry of transmitters and the end users, we develop

novel upper and lower bounds on the average achievable rate as a function of

K, B, and N .

• We consider asymptotic scenarios in two networks: dense and regular-extended,

in which user nodes have a uniform spatial distribution. We evaluate our bounds

for Rayleigh, Nakagami-m, Weibull, and LogNormal fading models along with

a truncated path-loss model. To evaluate the bounds, we utilize various results

from the extreme value theory. We also specify the associated scaling laws in

all parameters.

• With the developed bounds we give four design principles for service providers

and regulators. In the first scenario, we consider a dense femtocell network

and develop an asymptotic condition on K, B, and N to guarantee a non-

diminishing rate for each user. In the second and third scenarios, we consider

extended multicell networks and derive bounds for the choice of user-density

K/B in order for the service provider to maximize the revenue per transmitter
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and, at the same time, keep the per-user rate above a certain limit. Finally,

we consider an extended multicell network and develop asymptotic conditions

for K, B, and N to guarantee a minimum return on investment for the service

provider.

• For dense and regular-networks, we find a distributed resource allocation scheme

that achieves, for a wide choice of {K,B,N}, a sum-rate scaling equal to that

of the upper bound (on achievable sum-rate) that we developed earlier.

• Using the proposed achievability scheme, we show that the achievable sum-rate

of peer-to-peer networks increases linearly with the number of coordinating

transmit nodes B under fixed power allocation schemes only if B = O
(

logK
log logK

)
.

Our result extends the result in [67], wherein it was stated that if B = Ω(logK),

then a linear increase in achievable sum-rate w.r.t. B cannot be achieved. We

end our discussion with a note on MISO (Multiple-Input Single-Output) sys-

tems, where there are a fixed number of co-located antennas at each transmitter,

and obtain a similar distributed resource allocation problem as we found earlier

towards achievability of expected achievable sum-rate.

The rest of the chapter is organized as follows. In Section 5.2, we discuss past work.

In Section 5.3, we introduce our system model. In Section 5.4, we give general upper

and lower bounds on expected achievable sum-rate. We also give, for the cases of dense

and regular-extended networks, associated sum-rate scaling laws and four network-

design principles. In Section 5.5, we find a deterministic power allocation scheme

that governs the proposed distributed achievability scheme, followed by an analysis

of peer-to-peer networks. In Section 5.6, we provide details of another achievability
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scheme, similar to that developed in Section 5.5, for MISO systems. Finally, we

conclude in Section 5.7.

5.2 Related Work

Calculation of achievable performance of wireless networks has been a challenging,

and yet an extremely popular problem in the literature. The performance of large

networks have been mainly analyzed in the asymptotic regimes and the results have

been in the form of scaling laws [67–76] following the seminal work by Gupta and Ku-

mar [68]. Unlike these studies, our main bounds are not asymptotic and we take into

account both a distance based power-attenuation law and fading in our model. Scal-

ing laws for channel models incorporating both distance based power-attenuation and

fading have been considered in [77–79]. However, these works assume an unbounded

path-loss model. Unbounded path loss models affect the asymptotic behavior of the

achievable rates significantly. For instance, the capacity scaling law of Θ(logK) found

in [78,79] arises by exploiting infinite channel-gain of the users close to the transmitter,

whereas, without path-loss, the scaling law changes to Θ(log logK). The motivation

behind our work is to consider a truncated path-loss model that eliminates the sin-

gularity of unbounded path-loss models at zero distance. Further, our analyses take

into account the bandwidth and number of transmitters (and/or antennas) in large

networks, and provide a distributed achievability scheme that is optimal in scaling

sense for a large set of network parameters. To the best of our knowledge, such a

study has not been done earlier.
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5.3 System Model

We consider a time-slotted OFDMA-based downlink network of B transmitters

(or base-stations or femtocells or geographically distributed antennas) and K active

users, as shown in Fig. 5.1. The transmitters (TX) lie in a disc of radius p − R

(p > R > 0), and the users are distributed according to some spatial distribution in a

concentric disc of radius p. Under such general settings, Theorem 1 gives bounds on

the expected achievable sum-rate of the system. In the sequel, however, we assume,

for simplicity, that the transmitter locations are arbitrary and deterministic and the

users are uniformly distributed. This model too is quite general and can be applied

to several network configurations. For example, it models a dense network when

transmitter locations are random and the network radius p is fixed. Similarly, it

models a multi-cellular regular extended network when the transmitters (or base-

stations) are located on a regular hexagonal grid with a fixed grid-size, i.e., p ∝
√
B.

p
p− R

Transmitter (TX)

User

O

Figure 5.1: OFDMA downlink system withK users and B transmitters. O is assumed
to be the origin.
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Let us denote the coordinates of TX i (1 ≤ i ≤ B) by (ai, bi), and the coordinates

of user k (1 ≤ k ≤ K) by (xk, yk). Therefore, (ai, bi) are known for all i, and (xk, yk)

is governed by the following probability density function (pdf):

f(xk ,yk)

(
x, y
)
=

{
1

πp2
if x2 + y2 ≤ p2,

0 otherwise.
(5.1)

We now describe the channel model. We assume that the OFDMA subchan-

nels are grouped into N independently-fading resource blocks [80], across which the

transmitters (TXs) schedule users for downlink data-transmission. We denote the

complex-valued channel gain over resource-block n (1 ≤ n ≤ N) between user k and

TX i by hi,k,n, and assume that it is composed of the following factors:

hi,k,n = βR−α
i,k νi,k,n. (5.2)

Here, βR−α
i,k denotes the path-loss attenuation,

Ri,k = max{r0,
√

(xk − ai)2 + (yk − bi)2} (5.3)

for constants α, β, r0 (α > 1, r0 < R), and the fading factor νi,k,n is a complex-valued

random variable that is i.i.d. across all (i, k, n). Note that r0 is the truncation

parameter that eliminates singularity in the path-loss model. Currently, we keep the

distribution of νi,k,n general. Specific assumptions on the fading model {νi,k,n} will

be made in subsequent sections. Assuming unit-variance AWGN, the channel Signal-

to-Noise Ratio (SNR) between user k and TX i across resource-block n can now be

defined as

γi,k,n , |hi,k,n|2 = β2R−2α
i,k |νi,k,n|2. (5.4)

We assume that perfect knowledge of the users’ channel-SNRs (or gains) from all

TXs is available at every transmitter. This can be achieved via a backhaul network
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that enables sharing of users’ channel-state information17. We also assume that the

transmitters do not coordinate to send data to a particular user. Therefore, if a user

is being served by more than one transmitter, then while decoding the signal from

a given TX, it treats the signals from all other TXs as noise. This assumption is

restrictive because one may achieve a higher performance by allowing coordination

among TXs to send data to users. However, as will be explained after Theorem 1 in

Section 5.4, our results and design principles also hold for a class of networks wherein

coordination among TXs is allowed.

The maximum achievable sum-rate of our system can now be written as

Cx,y,ν(U,P) ,
B∑

i=1

N∑

n=1

log

(

1 +
Pi,n γi,Ui,n,n

1 +
∑

j 6=i Pj,n γj,Ui,n,n

)

(5.5)

where x := {xk for all k}, y := {yk for all k}, ν := {νi,k,n for all i, k, n}, U :=

{Ui,n for all i, n}, and P := {Pi,n for all i, n}. Here, Ui,n is the sum-rate maximizing

user scheduled by TX i across resource-block n, and Pi,n is the corresponding allocated

power. We assume that, in each time-slot, the total power allocated by each TX is

upper-bounded by Pcon. Therefore,
∑

n Pi,n ≤ Pcon for all i. One may also write (5.5)

as

Cx,y,ν(U,P) = max
u∈U ,p∈P

B∑

i=1

N∑

n=1

log

(

1 +
pi,n γi,ui,n,n

1 +
∑

j 6=i pj,n γj,ui,n,n

)

, (5.6)

where u , {ui,n for all i, n}, p , {pi,n for all i, n}, and {U ,P} are the sets of feasible

user allocations and power allocations. In particular,

U ,
{
{ui,n} : 1 ≤ ui,n ≤ K for all i, n} and

P ,
{
{pi,n} : pi,n ≥ 0 for all i, n, and

∑

n

pi,n ≤ Pcon for all i
}
. (5.7)

17Later, we will propose a distributed resource allocation scheme that does not require any sharing
of CSI among the transmitters and its sum-rate scales at the same rate as that of an upper bound
on the optimal centralized resource allocation scheme for a wide choice of network parameters.

113



In the next section, we derive novel upper and lower bounds on the expected

value of Cx,y,ν(U,P) that are later used to determine the scaling laws and develop

various network-design guidelines. To state the scaling laws, we use the following

notations: for two non-negative functions f(t) and g(t), we write f(t) = O(g(t)) if

there exists constants c1 ∈ R+ and r1 ∈ R such that f(t) ≤ c1 g(t) for all t ≥ r1.

Similarly, we write f(t) = Ω(g(t)) if there exists constants c2 ∈ R+ and r2 ∈ R such

that f(t) ≥ c2 g(t) for all t ≥ r2. In other words, g(t) = O(f(t)). Finally, we write

f(t) = Θ(g(t)) if f(t) = O(g(t)) and f(t) = Ω(g(t)).

5.4 Proposed General Bounds on Achievable Sum-Rate

The expected achievable sum-rate of the system can be written, using (5.5), as

C∗ = E
{
Cx,y,ν(U,P)

}
, (5.8)

where the expectation is over the SNRs {γi,k,n ∀ i, k, n}. The following theorem gives

upper and lower bounds on (5.8) that depend only on the exogenous channel-SNR

process.

Theorem 1 (General bounds). The expected achievable sum-rate of the system, C∗,
can be bounded as:

∑

i,n

E

{

log
(
1 + Pcon maxk γi,k,n

)

N + Pcon

∑

j 6=i γj,k,n

}

≤ C∗ ≤ min

{
∑

i,n

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

,

N
∑

i

E
{

log
(

1 +
Pcon

N
max
n,k

γi,k,n

)}}

. (5.9)

Proof. See Appendix C.1.

The upper bounds in Theorem 1 are obtained by ignoring interference, and the

lower bound is obtained by allocating equal powers Pcon

N
to every resource-block by
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every TX. As mentioned earlier, our bounds, that assume an uncoordinated system,

also serve as bounds (up to a constant scaling factor) for the expected max-sum-rate

of a class of networks wherein the number of transmitters coordinating to send data to

any user on any resource block are bounded. This can be explained using the following

argument. Let S transmitters coordinate to send data to user k on resource block

n and let {γ1,k,n, . . . , γS,k,n} be the corresponding instantaneous exogenous Signal-

to-Noise ratios. Then, an upper bound on the sum-rate of those S transmitters

across resource block n is log
(

1+
(
∑S

s=1

√
Ps,nγs,k,n

)2)

[81], where Ps,n is the power

allocated by transmitter s across resource block n. However, this term is upper

bounded by S
∑S

s=1 log(1+Ps,nγs,k,n), which is S times the upper bound on sum-rate

obtained by ignoring interference in a completely uncoordinated system (same as that

used in Theorem 1). Since S is bounded, the scaling laws for the upper bound and

the resulting design principles remain unchanged. The lower bound, on the other

hand, assumes no coordination and allocates equal power to every TX and every

resource-block. Clearly, by coordinating among transmitters, one can achieve better

performance. The above arguments, coupled with the fact that Theorem 1 does not

assume any specific channel-fading process or any specific distribution on transmitter

and user-locations, make our bounds valid for a wide variety of coordinated and

uncoordinated networks. In the next subsection, Section 5.4.1, we evaluate the bounds

in Theorem 1 to two classes of networks – dense and regular-extended – using extreme-

value theory, and then provide interesting design principles based on them.
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5.4.1 Scaling Laws and Their Applications in Network De-
sign

We first present an analysis of dense networks, followed by an analysis of regular-

extended networks. In particular, we use extreme-value theory and Theorem 1 to

obtain perfomance bounds and associated scaling laws.

Dense Networks

Dense networks contain a large number of transmitters that are distributed over a

fixed area. Typically, such networks occur in dense-urban environments and in dense

femtocell deployments. In our system-model, a dense network corresponds to the case

in which p is fixed, and K,B,N are allowed to grow. The following two lemmas use

extreme-value theory and Theorem 1 to give bounds on the achievable sum-rate of

the system for various fading channels.

Theorem 2. For dense networks with large number of users K and Rayleigh fading
channels, i.e., νi,k,n ∼ CN (0, 1) ∀ i, k, n,

(
log(1 + PconlK) +O(1)

)
BNfDN

lo (r, B,N) ≤ C∗ ≤
(
log(1 + PconlK) +O(1)

)
BN,

(5.10)

where r > 0 is a constant, lK = β2r−2α
0 log

Kr20
p2

, and fDN
lo (r, B,N) = r2

(1+r2)(N+Pconβ2r−2α
0 (1+r)B)

.

The following scaling laws result from (5.10):

C∗ = O(BN log logK), and

C∗ = Ω(min{B,N} log logK). (5.11)

Proof. For proof, see Appendix C.2.

Similar results under different fading models are summarized in the following

lemma.

Lemma 9. If |νi,k,n| belongs to either Nakagami-m, Weibull, or LogNormal family of
distributions, then, for dense networks, the C∗ satisfies, for large K,
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For Nakagami-(m,w): C∗ = O(BN log logK) C∗ = Ω(min{B,N} log logK)

For Weibull (λ, t): C∗ = O(BN log log
2
t K) C∗ = Ω(min{B,N} log log 2

t K)
For LogNormal (a, ω): C∗ = O(BN

√
logK) C∗ = Ω(min{B,N}√logK).

Proof. For proof, see Appendix C.3.

Based on Theorem 2, we now propose a design principle for large dense networks.

In the sequel, we call our system “scalable” under a certain condition, if the condition

is not violated as the number of users K →∞.

Principle 1. In dense femtocell deployments, with the condition that the per-user

throughput remains above a certain lower bound, for the system to be scalable, the

total number of independent resources BN must scale as Ω
(

K
log logK

)
.

We use the dense-network abstraction for a dense femtocell deployment [82] where

the service provider wants to maintain a minimum throughput per user. In such cases,

a necessary condition that the service provider must satisfy is:

BN
(

log(1 + Pconβ
2r−2α

0 log
Kr20
p2

) + s
)

K
≥ s̄

for some s̄ > 0, where s = O(1). The above equation implies

BN log logK

K
= Ω(1). (5.12)

Therefore, the total number of independent resources BN , i.e., the product of number

of transmitters and the number of resource blocks (or bandwidth), must scale no

slower than K
log logK

. Otherwise, then the system is not scalable and a minimum

per-user throughput requirement cannot be maintained.

Next, we consider another class of networks, namely regular-extended networks,

and find performance bounds that motivate the subsequent design guidelines for such

networks.
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Regular Extended Networks

In extended networks, the area of the network grows with the number of nodes,

keeping the number of nodes per unit area fixed. Here we study regular extended

networks, in which the TXs lie on a regular hexagonal grid as shown in Fig. 5.2.

The distance between two neighbouring transmitters is 2R. Hence, the radius of the

network p = Θ(R
√
B).

2R

Transmitters

O

Figure 5.2: A regular extended network setup.

The following two lemmas use Theorem 1 and extreme-value theory to give per-

formance bounds and associated scaling laws for regular extended networks under

various fading channels.

Theorem 3. For regular extended networks with large K and Rayleigh fading chan-
nels, i.e., νi,k,n ∼ CN (0, 1),
(
log(1 + PconlK) +O(1)

)
BNfEN

lo (r,N) ≤ C∗ ≤
(
log(1 + PconlK) +O(1)

)
BN,(5.13)

where lK = β2r−2α
0 log

Kr20
BR2 , f

EN
lo (r,N) = (1+r2)−1r2

N+(1+r)c0
, and c0 =

Pconβ2r2−2α
0

R2

(

4+ π√
3(2α−2)

)

.

The associated scaling laws are:

C∗ = O
(

BN log log
K

B

)

, and C∗ = Ω
(

B log log
K

B

)

. (5.14)
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Proof. For proof, see Appendix C.2.

Lemma 10. If |νi,k,n| belongs to either Nakagami-m, Weibull, or LogNormal family
of distributions, then, for regular extended networks, the scaling laws for the upper
bounds are:

For Nakagami-(m,w): C∗ = O
(

BN log log K
B

)

C∗ = Ω(B log log K
B
)

For Weibull(λ, t): C∗ = O
(

BN log log
2
t K

B

)

C∗ = Ω
(

B log log
2
t K

B

)

For LogNormal(a, ω): C∗ = O
(

BN
√

log K
B

)

C∗ = Ω
(

B
√

log K
B

)

.

Proof. For proof, see Appendix C.3.

Using Theorem 3, we now propose three design principles.

Principle 2. In regular extended networks, if a) the users are charged based on the

number of bits they download; b) there is a unit cost for each TX installed and a cost cN

for unit resource block incurred by the service provider; c) the return-on-investment

must remain above a certain lower bound; then for fixed B, the system is scalable

only if N = O(logK), and for fixed N , the system is scalable only if B = O(K). In

addition, if a minimum per-user throughput requirement is also required to be met,

then the system is scalable for fixed N only if B = Θ(K), and not scalable for fixed

B.

Consider the case of a regular extended network with large K. Using the upper

bound in Theorem 1 obtained via Jensen’s inequality, we have

C∗ ≤
(

log
(

1 +
Pcon

N
lK +

Pcon

N
log logK

)

+O(1)

)

BN

≈ BN log
(Pcon

N
lK

)

, for large
PconlK
N

, (5.15)

where lK = β2r−2α
0 log

KNr20
BR2 . For simplicity of analysis, let Pcon = β = r0 = R = 1 (in

their respective SI units). If the service provider wants to maintain a minimum level
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of return-on-investment, then it must satisfy

BN

B + cNN
log

(
1

N
log

KN

B

)

> s̄, (5.16)

for some s̄ > 0. The above equation implies N = O(logK) for fixed B, and B = O(K)

for fixed N . In addition, if a minimum per-user throughput is also required, then the

service provider must satisfy the following equation in addition to (5.16):

BN

K
log

(
1

N
log

KN

B

)

> ŝ, (5.17)

for some ŝ > 0. Equations (5.16) and (5.17) yield that the system is not scalable

under fixed B, and for fixed N , the system is scalable only if B = Θ(K).

Principle 3. In a large extended multi-cellular network, if the users are charged based

on the number of bits they download and there is a unit cost for each TX incurred by

the service provider, then there is a finite range of values for the user-density K
B

in

order to maximize return-on-investment of the service provider while maintaining a

minimum per-user throughput.

Consider a regular extended network with fixed number of resource blocks N .

In this case, we have C∗ = Θ
(
B log log K

B

)
. Assuming a revenue model wherein the

service provider charges per bit provided to the users, the total return on investment

of the service provider is proportional to the achievable sum-rate per TX. Therefore,

in large scale systems (large K), one must solve:

max
K,B

c log
(

1 + Pconβ
2r−2α

0 log
Kr20
BR2

)

s.t.
cB log(1 + Pconβ

2r−2α
0 log

Kr20
BR2 )

K
≥ s̄, (5.18)

for some s̄ > 0, where c is a constant bounded according to (5.13)-(5.14). For simplic-

ity, let β = r0 = R = Pcon = 1 (in respective SI units). By variable-transformation,
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the above problem becomes convex in ρ , K
B
. Solving it via dual method, the Karush-

Kuhn-Tucker condition is

ρ =
(λ+ 1)10

(1 + log ρ)λ
, (5.19)

where λ ≥ 0 is the Lagrange multiplier. The plots of LHS and RHS of (5.19) along

with the constraint curve are plotted for λ = 0.1, 1,∞ in Fig. 5.3. There, the con-
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Figure 5.3: LHS and RHS of (5.19) as a function of ρ.

straint curve (see the constraint in (5.18)) is given by c
s̄
log(1 + log ρ). Note that

according to (5.18), the constraint is satisfied only when the constraint curve (in

Fig. 5.3) lies above the LHS curve, i.e., when ρ ∈ [1.1, 12.7]. Therefore, the optimal

ρ lies in the set [1.1, 12.7]. In Figure 5.3, the optimal ρ for a given λ (denoted by

ρ∗(λ)) is the value of ρ at which the LHS and RHS curves intersect for that λ. We

observe from the figure that ρ∗(λ) decreases with increasing λ. Since ρ∗(λ) = 4.1

when λ = ∞, the optimal ρ is greater than or equal to 4.1. Figure 5.4 shows the
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variation of ρ∗(λ) as a function of λ. From the plot, we observe that ρ∗(λ) exists only
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Figure 5.4: Optimal user-density, i.e, ρ∗(λ), as a function of λ.

for λ > 0.29, and satisfies 4.1 ≤ ρ∗(λ) ≤ 12.7 users/BS. Furthermore, the optimal

user-density ρ∗(λ) is a strictly-decreasing convex function of the cost associated with

violating the per-user throughput constraint, i.e., λ.

Principle 4. In a large extended multi-cellular network, if the users are charged a

fixed amount regardless of the number of bits they download and there is a unit cost for

each TX incurred by the service provider, then there is a finite range of values for K
B

in order to maximize return-on-investement of the service provider while maintaining

a minimum per-user throughput.

Consider a regular extended network with fixed N , similar to that assumed in

Principle 3. Here, we assume a revenue model for the service provider wherein the

service provider charges each user a fixed amount regardless of the number of bits
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the user downloads. Then, the return on investment of the service provider is pro-

portional to the user-density ρ = K
B
. In large scale systems (large K), the associated

optimization problem is:

max
K,B

s
K

B
s.t.

cB log(1 + Pconβ
2r−2α

0 log
Kr20
BR2 )

K
≥ s̄ (5.20)

for some constants c, s, s̄ > 0. Here, s depends on the amount users are charged by

the service provider, and c can be bounded according to (5.13)-(5.14). For simplicity

of analysis, let β = r0 = R = Pcon = 1 (in respective SI units). The above problem

becomes convex in ρ , K
B
. Let the optimal solution be denoted by ρ∗. Now, the

constraint in terms of ρ is

s̄

c
≤ log(1 + log ρ)

ρ
., (5.21)

The plot of LHS and RHS of (5.21) as a function of ρ (for ρ ≥ 1) is plotted in Fig. 5.5.

Examining (5.21) and Fig. 5.5, we note that the per-user throughput constraint is

satisfied only if s̄
c
∈ [0, 0.26]. Moreover, for a given value of s̄

c
, the set of feasible ρ

lies in a closed set (for which the RHS curve remains above the LHS curve). The

maximum value of ρ in this closed set, i.e., the value of ρ at point B in Fig. 5.5, is

the one that maximizes the objective in (5.20), i.e., sK/B. Hence, it is the optimal

ρ for the given value of s̄/c. Let us denote it by ρ∗(s̄/c). Note that ρ∗(s̄/c) ≥ 2.14

(since point B lies to the right of point A in Fig. 5.5).

If s̄/c is known exactly, then the optimal user-density ρ∗ = ρ∗(s̄/c). If not, we can

write from (5.13)-(5.14) that clb ≤ c ≤ cub, for some positive constants clb, cub. Then,

ρ∗ ∈ [ρ∗(s̄/clb), ρ
∗(s̄/cub)]. Moreover, since ρ∗(s̄/c) ≥ 2.14 for all s̄/c ∈ [0, 0.26], we

have ρ∗(s̄/cub) ≥ ρ∗(s̄/clb) ≥ 2.14.
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Figure 5.5: LHS and RHS of (5.21) as a function of ρ.

5.5 Maximum Sum-Rate Achievability Scheme

In the previous section, we derived general performance bounds and proposed

design principles based on them for two specific types of networks - dense and regular-

extended. In this section, we propose a distributed scheme for achievability of max-

sum-rate under the above two types of networks. To this end, we construct a tight

approximation of C∗ and find a distributed resource allocation scheme that achieves

the same sum-rate scaling law as that achieved by C∗ for a large set of network

parameters. Let us define an approximation of C∗ as follows:

C∗LB , max
P∈P

E

{

max
u∈U

B∑

i=1

N∑

n=1

log

(

1 +
γi,ui,n,n Pi,n

1 +
∑

j 6=i γj,ui,n,n Pj,n

)}

. (5.22)

Note that C∗LB ≤ C∗. To analyze the C∗LB, we give a novel extreme-value theoretic

result in Theorem 4.
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Theorem 4. Let {X1, . . . , XT} be i.i.d. random variables with cumulative distribu-
tion function (cdf) FX(·). Then, for any increasing concave function V (·), we have

(
1− e−S1

)
V
(
lT/S1

)
≤ E

{

V
(
max
1≤t≤T

Xt

)}

. (5.23)

Here, S1 ∈ (0, T ] and FX

(
lT/S1

)
= 1− S1

T
.

Proof. See Appendix C.4.

The following corollary can be stated as a result of the above theorem.

Corollary 1. Let {X1, . . . , XT} be i.i.d. random variables with cdf FX(·). Then,
(

1− 1

log T

)

log
(
1 + p lT/ log log T

)
≤ E

{

log
(
1 + p max

t
Xt

)}

.

Furthermore,

0.63 ≤
E
{

log
(
1 + p maxtXt

)}

log
(
1 + p lT

) . (5.24)

Proof. Substitute S1 = log log T , and V (x) = log(1 + px) in Theorem 4 to prove the
first equation. Substitute S1 = 0.5 and V (x) = log(1 + px) to prove (5.24).

We will now use the above corollary to find upper and lower bounds on C∗LB for

dense networks and Rayleigh-fading channels18 via a class of deterministic optimiza-

tion problems.

Theorem 5. Under Rayleigh-fading channels, i.e., |νi,k,n| ∼ CN (0, 1), let a class of
deterministic optimization problems be defined as follows:

OP
(
c, h(K)

)

, max
P∈P

B∑

i=1

N∑

n=1

log(1 + Pi,nxi,n) (5.25)

s.t. x
r20 h(K)

p2
= e

xi,n

β2r−2α
0

∏

j 6=i

(

1 +
Pj,nxi,n

c2αr−2α
0

)

for all i, n, (5.26)

where h(·) is an increasing function and c is a positive constant. Then, for large K,

(
1− e−S1

)
OP
(
r0, K/S1

)
≤ C∗LB ≤

(

1 +
β2r−2α

0 u

l̄(2p,K)

)

OP
(
2p,K

)
(5.27)

18 Theorem 5 can be easily extended for Nakagami-m, Weibull, and LogNormal fading channels.

125



where S1 ∈ (0, K], u is the Euler-Mascheroni constant, and l̄(2p,K) is a large number
that increases with increasing K. In particular, if l = l̂(η1, η2) be the solution to
r20η2
p2

= e
l

β2r−2α
0

(

1 + lPcon

η2α1 r−2α
0

)B−1

for any η1, η2, then l̄(2p,K) ≈ l̂(2p,K) for large K.

Further, OP(·, ·) satisfies

1 ≤ OP
(
c2, h(K)

)

OP
(
c1, h(K)

) ≤
(c2
c1

)2α

(5.28)

for positive constants c1 and c2 (c1 ≤ c2).

Proof. See Appendix C.5.

The above theorem leads to following two corollaries for dense and regular-extended

networks.

Corollary 2. For dense networks (i.e., fixed p) and Rayleigh-fading channels, we
have

(

1− 1

logK

)

OP

(

r0,
K

log logK

)

≤ C∗LB ≤
(

1 +
β2r−2α

0 u

l̄(2p,K)

)

OP(2p,K) (5.29)

and

0.63OP(r0, K) ≤ C∗LB ≤
(
2p

r0

)2α(

1 +
β2r−2α

0 u

l̄(2p,K)

)

OP(r0, K). (5.30)

Note that for fixed B and large K, l̄(2p,K) = Θ(logK).

Proof. Put S1 = log logK in Theorem 5 to prove (5.29). Put S1 = 1 in (5.27) and
use (5.28) to prove (5.30).

Corollary 3. For regular extended networks and Rayleigh-fading channels, if ρ ,
K/B users are distributed uniformly in each cell and each TX schedules users only
within its cell, then

(

1− 1

log ρ

)

OP

(

r0,
ρ

log log ρ

)

≤ C∗LB ≤
(

1 +
β2r−2α

0 u

l̄(R
√
3/2, K)

)

OP

(
R
√
3

2
, ρ

)

. (5.31)

Moreover, we have

0.63OP(r0, ρ) ≤ C∗LB ≤
(

1 +
β2r−2α

0 u

l̄(R
√
3/2, K)

)(
R
√
3

2r0

)2α

OP(r0, ρ). (5.32)

Proof. Note that p = Θ(
√
B) in this case. Therefore we use, instead of h(K), h(ρ)

in Theorem 5 to obtain the above result, where ρ = K
B
. Also note that 2p is replaced

by R
√
3

2
since the maximum distance between a user and its serving TX is R

√
3

2
.
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The above two corollaries highlight the idea behind the proposed achievability

strategy. In particular, we use the lower bounds in (5.30) and (5.32) to give a dis-

tributed resource allocation scheme. The steps of the proposed achievability scheme

are summarized below.

1. Find the best power allocation {Pi,n} by solve the LHS of (5.30) for dense

networks, or LHS of (5.32) for regular-extended networks. Note that this can

be computed offline.

2. For each TX i and resource-block n, schedule the user k(i, n) that satisfies:

k(i, n) = argmax
k

Pi,nγi,k,n
1 +

∑

j 6=i Pj,nγj,k,n
. (5.33)

We propose that each user k calculates
Pi,nγi,k,n

1+
∑

j 6=i Pj,nγj,k,n
for each (i, n) combination and

feeds back the value to TX i, thus making the algorithm distributed.

We will now compare low-powered peer-to-peer networks and high-powered single

TX systems to give a design principle using on the bounds in Corollary 2.

Principle 5. The sum-rate of a peer-to-peer network with B transmit nodes (geo-

graphically distributed antennas), each transmitting at a fixed power P̄ across every

resource-block, increases linearly with B only if B = O
(

logK
log logK

)
. If B = Ω

(
logK

log logK

)
,

then there is no gain with increasing B. Further, the gain obtained by implementing

a peer-to-peer network over a high-powered single-TX system (with power BP̄ across

each resource-block) is






Θ(B) if B = O
(

logK
log logK

)
,

Θ
(

logK
log logK

)
if B = Ω

(
logK

log logK

)
and B = O(logK),

Θ
(
logK
logB

)
if B = Ω(logK).

(5.34)

In this case, we consider a peer-to-peer networks with B nodes randomly dis-

tributed in a circular area of fixed radius p. Assuming fixed power allocation, we
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have Pi,n = P̄ for all i, n. Therefore, from (5.26), we get

xi,n ≈ Θ

(

min

{

β2r−2α
0 log

r20h(K)

p2
,
1

P̄

( c

r0

)2α
B−1

√

r20
p2
h(K)

})

, (5.35)

and OP(c, h(K)) = Θ
(∑

i,n log(1+P̄ xi,n)
)
= Θ

(
min

{
BN log log h(K), N log h(K)

})
.

Note that in the scenarios of either fixed power allocation schemes or channel co-

herence time being much smaller than the codeword length, C∗LB = Θ
(
OP(c,K)

)
is

the expected maximum achievable sum-rate C∗. Therefore, using (5.30), we have

h(K) = K, and the sum-rate capacity under fixed power-allocation scaling as:

C∗ = Θ
(
min

{
BN log logK,N logK

})
. (5.36)

In other words, if B = O
(

logK
log logK

)
, then C∗ = Θ(BN log logK), i.e., we get a linear

scaling in sum-rate capacity w.r.t. B. Note that this is also the scaling of the upper

bound on sum-rate capacity given in Theorem 2. However, if B = Ω
(

logK
log logK

)
, then

C∗ = Θ(N logK).

One can also view the above scenario as a multi-antenna system with a single base-

station in which all B transmitters are treated as co-located antennas (i.e., B = M).

Then, comparing our results to those in [67], we note that our results extend the

results in [67]. In particular, [67] showed that that linear scaling of sum-rate C∗

w.r.t. number of antennas M holds when M = Θ(logK) and does not hold when

M = Ω(logK). We establish that even if M scales slower than logK, the achievable

sum-rate scaling is not linear in M unless M = O
(

logK
log logK

)
. Only in the special case

of M = Θ(logK) is C∗ = Θ(N logK) = Θ(NM). Another way to state the above

result is that for a given number of users K (K is large), the achievable sum-rate

increases with increasing M only until M = O
(

logK
log logK

)
, beyond which the achievable

sum-rate stabilizes.
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Now, comparing the low-powered peer-to-peer network to a high-powered single-

TX system, we assume, for fair comparison, that P1,n = BP̄ ∀ n. Then, for a

high-powered single-TX system, we have C∗ = Θ(N log(BP̄ logK)). Hence, the gain

of peer-to-peer networks over a high-powered single-TX system is given by (5.34).

5.6 A Note on MISO vs SISO Systems

Until now, we discussed systems where either every transmitter had a single an-

tenna or different transmitters were treated as geographically distributed antennas

with independent power constraints (i.e., Pcon at each TX). We wrap up our anal-

ysis with a discussion on mutiple antennas at each TX followed by conclusions in

Section 5.7.

We use the opportunistic random scheduling scheme proposed in [67], which

achieves the sum-rate capacity in the scaling sense for fixed power-allocation schemes.

Assume that each TX has M antennas and each user (or, receiver) has a single

antenna. Every TX constructs M orthonormal random beams φm (M × 1) for

m ∈ {1, . . . ,M} using an isotrophic distribution [83]. With some abuse of notation,

let us suppose that the signal received by user scheduled by TX i across resource

block n using beam m, denoted by u(i, n,m), is given by

yu(i,n,m),n = Hi,u(i,n,m),n

(

φm xi,u(i,n,m),n +
∑

m′ 6=m

φm′ xi,u(i,n,m′),n

)

+
∑

j 6=i

M∑

m̃=1

Hj,u(i,n,m̃),n φm̃ xj,u(j,n,m̃),n + wu(i,n,m),n , (5.37)

where Hi,k,n = βR−α
i,k νi,k,n ∈ C1×M is the channel-gain matrix, νi,k,n is the 1 × M

vector containing i.i.d. complex Gaussian random variables, and wk,n ∼ CN (0, 1) is

AWGN that is i.i.d. for all (k, n). Abbreviating E{|xi,u(i,n,m),n|2} by Pi,n,m, we can
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write the SINR corresponding to the combination (i, k, n,m) as:

SINRi,k,n,m =
Pi,n,mγi,k,n,m

N0 +
∑

m′ 6=m Pi,n,m′ γi,k,n,m +
∑

j 6=i

∑M
m̃=1 Pj,n,m̃ γj,k,n,m̃

, (5.38)

where γi,k,n,m , |Hi,k,n φm|2
N0

for all (i, k, n,m). Since Hi,k,n φm are i.i.d. over all

(k,m, n) [67], γi,k,n,m are i.i.d. over (k,m, n). A lower bound on sum-rate capacity,

similar to that in (5.22), under opportunistic random beamforming can be written

as:

C∗LB,MISO

, max
{Pi,n,m≥0 ∀ i,n,m}

E

{

max
{u(i,n,m)}

B∑

i=1

N∑

n=1

M∑

m=1

log
(
1 + SINRi,u(i,n,m),n,m

)

}

(5.39)

s.t.
∑

n,m

Pi,n,m ≤ Pcon for all i. (5.40)

The above optimization problem is similar to that in (5.22) with BM transmitters.

Therefore, repeating the analysis in (5.22)-(5.30) under dense networks for the prob-

lem in (5.39)-(5.40), we get

(

1− 1

logK

)

OPMISO

(

r0,
K

log logK

)

≤ C∗LB,MISO (5.41)

≤
(

1 +O

(
1

logK

))

OPMISO(2p,K),

where

OPMISO(c, h(K))

, max
{Pi,n,m≥0 ∀n,m,n}

B∑

i=1

N∑

n=1

M∑

m=1

log(1 + Pi,n,m xi,k,n,m) (5.42)

s.t.
∑

m,n

Pi,n,m ≤ Pcon ∀ i, and for all (i,m),

(

1 +
Pi,n,mxi,k,n,m

c2αr−2α
0

)
r20h(K)

p2
= e

xi,k,n,m

β2r−2α
0

∏

j

M∏

m̃=1

(

1 +
Pj,n,m̃xi,k,n,m̃

c2αr−2α
0

)

.
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Furthermore,

0.63 ≤
C∗LB,MISO

OPMISO

(
r0, K

) ≤
(
2p

r0

)2α

+O

(
1

logK

)

. (5.43)

5.7 Conclusion

In this paper, we developed bounds for the downlink sum-rate capacity in large

OFDMA based networks and derived the associated scaling laws with respect to num-

ber of users K, number of transmitters B, and number of resource-blocks N . Our

bounds hold for a general spatial distribution of transmitters, a truncated path-loss

model, and a general channel-fading model. We evaluated the bounds in dense and

extended networks in which tranmitter nodes are distributed uniformly for Rayleigh,

Nakagami-m, Weibull, and LogNormal fading models. Using these results, we de-

veloped four design principles for service providers and regulators to achieve QoS

provisioning along with system scalability. According to the first principle, in dense-

femtocell deployments, for a minimum per-user throughput requirement, we showed

that then the system is scalable only if BN scales as Ω
(

K
log logK

)
. In the second

and third principles, we considered different pricing policies and showed that the

user density must be kept within a finite range of values in order to maximize the

return-on-investment, while maintaining a minimum per-user rate. In the fourth prin-

ciple, we also considered the cost of bandwidth to the service provider along with the

cost of the transmitters and showed that, for fixed B, the system is scalable only if

N = O(logK), and for fixed N , the system is scalable only if B = O(K). Thereafter,

towards developing an achievability scheme, we proposed a deterministic distributed

resource allocation scheme and developed more design principles. In particular, we

showed that the sum-rate capacity of a peer-to-peer network with B transmitters (or,
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a MISO system with B transmitter antennas at a single transmit node) increases with

B only when B = O
(

logK
log logK

)
.
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Chapter 6: Conclusions and Future Work

In this dissertation, we studied downlink resource allocation strategies for point-

to-point systems, single-cell OFDMA (Orthogonal Frequency Division Multiple Ac-

cess) systems, and multi-cell OFDMA systems and proposed guidelines for service

providers to design efficient wireless communication systems. First, for point-to-point

systems, we proposed greedy rate-adaptation schemes based on ACK/NAK (Acknowl-

edgement/Negative Acknowledgement) feedback for continuous-state channels. We

showed that our greedy rate adaptation scheme performs significantly better than

the fixed rate scheme and is close to an upper bound on the optimal POMDP-based

rate-adaptation scheme, especially under slow-fading channels. Second, for single-cell

OFDMA downlink systems, we proposed simultaneous user-scheduling and resource

(power and rate) allocation algorithms under imperfect channel-state information. In

cases where subchannel-sharing among users is allowed, we propose an optimal algo-

rithm and for cases in which one subchannel is assigned to one user only, we proposed

an algorithm that was near-optimal. Our algorithm is faster than the traditional sub-

gradient based/golden-section based algorithms. Further, we gave theoretical perfor-

mance guarantees as a function of number of iterations of the algorithm. Finally, we

considered large multi-cellular OFDMA-based networks and proposed performance

bounds as a function of the number of users K, the number of base-stations B, and
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the number of resource-blocks N . In particular, we derived novel upper and lower

bounds on the achievable sum-rate for a general spatial geometry of transmitters (or,

base-stations), a truncated path loss model, and a variety of fading models (Rayleigh,

Nakagami-m, Weibull, and LogNormal). We also derived the associated scaling laws

and developed design principles for service providers, along with some guidelines for

the regulators, in order to achieve provisioning of various QoS (Quality of Service)

guarantees for the end users and, at the same time, maximize revenue for the ser-

vice providers. Furthermore, we provided a scheme that achieves the same sum-rate

scaling as that of the optimal resource allocation scheme.

Some future work directions in which we wish to continue our work are as follows:

1. Considering imperfect channel-state information (CSI) in multi-transmitter sys-

tems and developing distributed scheduling and resource allocation schemes

(similar to those proposed in Chapter 5) that achieve the same sum-rate scal-

ing as that of the optimal resource allocation scheme remains a topic of future

work. The motivation for this line of work comes from the question: How does

the accuracy of CSI affect the sum-rate of a communication system? Another

relevant question that needs to be answered is: Under a given pricing scheme,

what trade-offs exist between accuracy of CSI and the accumulated revenue?

2. Our analysis in Chapter 5 was based on transmitters that did not cooperate

to send data to a particular receiver. Similar analyses can be done for systems

that allow transmitter cooperation and beamforming techniques at the trans-

mitters/receivers. This may possibly lead to the answer to questions such as:

When does beamforming fail to provide significant gain in the sum-rate of large

134



dense networks? The motivation behind this idea is that, in large dense net-

works, due to availability of large number of transmitters within a fixed area,

the optimal resource allocation scheme might force some transmitters to not

transmit at all. This will reduce the interference caused to other transmitters’

signals received at user-terminals. However, it will also limit the beamforming

gain. Note that, with large number of transmitters in a dense network (with

fixed network size), there will always exist transmitters that are close to a given

user and observe strong channel conditions between themselves and that user.

Thus, user scheduling alone may perform close to beamforming.

3. Extensions can also be made to OFDMA systems with multiple antennas at

the transmitters and receivers, or large MIMO-OFDMA (Multiple Input Mul-

tiple Output OFDMA) systems. Related results involving multiple antennas at

transmitters and single antenna at receivers have been discussed in Chapter 5.

However, a more general analysis for MIMO-OFDMA systems remains a topic

of future work.

4. Another potential problem involves resource allocation under a combination of

both uplink and downlink communication. Consider the case where only two

users (say, A and B) communicate via a communication link. The transmitting

user (say, A) sends data to its serving base-station (say BS-A), which then sends

the data to another base-station (say, BS-B) that serves receiving user B. The

amount of data that can be sent on this communication link is limited by the

channel conditions in uplink channel (from A to BS-A), downlink channel (from

BS-B to B), and the rate of incoming data at the transmitting user A. Thus,
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allocation of resources needs to be done so that the sum-rate/throughput of this

system is maximized, where the sum-rate/throughput should take into account

all the aforementioned factors, i.e., arrival rate of data and uplink & downlink

channel-conditions.
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Appendix A: Proofs in Chapter 2

Here, we derive the expression for p(γt | γt−nd) given in (2.44). Let gt,R and gt,I

be the real and imaginary parts of channel gain, gt. Also let gt−nd = |gt−nd|ejθ for

θ ∼ U(0, 2π). Then

p(γt | γt−nd) =

∫ 2π

0

p (γt | γt−nd, θ) p(θ)dθ. (A.1)

We first find p(|gt| | γt−nd, θ) in order to evaluate p(|gt| | γt−nd). Since

gt = (1− α)nd|gt−nd|ejθ + Z (A.2)

for Z = α
∑nd−1

i=0 (1−α)jwt−j and |gt| =
√

γt
K
, then, conditional on the pair (γt−nd, θ),

the random variables gt,R and gt,I are both Gaussian with mean

E{gt,R | γt−nd, θ} = (1− α)nd
√

γt−nd

K
cos θ (A.3)

and

E{gt,I | γt−nd, θ} = (1− α)nd
√

γt−nd

K
sin θ, (A.4)

respectively, and variance σ2
Z = E{Z2}. Thus conditional on (γt−nd, θ), the random

variable |gt| = g2t,R + g2t,I is Rician [1, p. 78]:

p(|gt| | γt−nd, θ) =
|gt|
σ2
Z

exp

(

−
(
|gt|2 + (1− α)2nd

γt−nd

K

)

2σ2
Z

)

× I0




|gt|(1− α)nd

√
γt−nd

K

σ2
Z



 . (A.5)
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One can see that, given γt−nd, the random variable |gt| is independent of θ. Since

γt = K|gt|2, we have

p(γt | γt−nd) =
1

2Kσ2
Z

exp

(

−
(
γt
K
+ (1− α)2nd γt−nd

K

)

2σ2
Z

)

× I0

(
(1− α)nd

√
γtγt−nd

Kσ2
Z

)

. (A.6)

Hence combining (A.1) and (A.6), we get

p(γt | γt−nd) =
1

2Kσ2
Z

exp

(

−
(
γt + (1− α)2ndγt−nd

)

2Kσ2
Z

)

× I0

(
(1− α)nd

√
γtγt−nd

Kσ2
Z

)

. (A.7)

Finally, plugging σ2
Z = α

2−α

(
1− (1− α)2nd

)
into (A.7) yields (2.44).
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Appendix B: Proofs in Chapter 3

B.1 Proof for convexity of CSRA problem

In this proof, we will show that the primal objective function in the CSRA problem

given by
∑

n,k,m

In,k,mFn,k,m(In,k,m, xn,k,m), (B.1)

where Fn,k,m(In,k,m, xn,k,m) is defined in (3.4), is a convex function of I (∈ ICSRA) and

x. For this, first we consider the case where In,k,m > 0 ∀n, k,m. Then, we have the

differentiable function given by

In,k,mFn,k,m(In,k,m, xn,k,m) = −In,k,mE
{

Un,k,m

(
(1− ame

−bmxn,k,mγn,k/In,k,m)rm
)

︸ ︷︷ ︸

Ũn,k,m

}

,

(B.2)

where the expectation is over γn,k. We show that the Hessian of this function with

respect to In,k,m and xn,k,m is positive semi-definite. For this, first we write the

gradient of −In,k,mŨn,k,m w.r.t. In,k,m and xn,k,m as

[

−Ũn,k,m +
ambmrmxn,k,m

In,k,m
Ũ ′
n,k,mγn,k e

−bmxn,k,mγn,k/In,k,m

−ambmrmŨ ′
n,k,mγn,k e

−bmxn,k,mγn,k/In,k,m

]⊺

, (B.3)

where ⊺ denotes the transpose of a matrix and ′ denotes the derivative. For simplicity,

let us denote ambmrmγn,ke
−bmxn,k,mγn,k/In,k,m as Wn,k,m. Therefore, the gradient can be
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written as:
[

−Ũn,k,m +
xn,k,m

In,k,m
Ũ ′
n,k,mWn,k,m

−Ũ ′
n,k,mWn,k,m

]

, (B.4)

where

∂Ũn,k,m

∂In,k,m
= −xn,k,m

I2n,k,m
Ũ ′
n,k,mWn,k,m,

∂Ũn,k,m

∂xn,k,m
=

Ũ ′
n,k,mWn,k,m

In,k,m
,

∂Wn,k,m

∂In,k,m
=

bmxn,k,mγn,k
I2n,k,m

Wn,k,m, and

∂Wn,k,m

∂xn,k,m
= −bmγn,k

In,k,m
Wn,k,m. (B.5)

Using the gradient, the Hessian of −In,k,mŨn,k,m is given as:




x2
n,k,mWn,k,m

I3n,k,m

(

−Ũ ′′
n,k,mWn,k,m + bmγn,kŨ

′
n,k,m

)
xn,k,mWn,k,m

I2n,k,m

(

Ũ ′′
n,k,mWn,k,m − bmγn,kŨ

′
n,k,m

)

xn,k,mWn,k,m

I2n,k,m

(

Ũ ′′
n,k,mWn,k,m − bmγn,kŨ

′
n,k,m

)
Wn,k,m

In,k,m

(

−Ũ ′′
n,k,mWn,k,m + bmγn,kŨ

′
n,k,m

)

.





=
Wn,k,m

In,k,m

(

−Ũ ′′
n,k,mWn,k,m + bmγn,kŨ

′
n,k,m

)
[

x2
n,k,m

I2n,k,m
−xn,k,m

In,k,m

−xn,k,m

In,k,m
1.

]

.

The above matrix is positive semi-definite. Therefore, In,k,mFn,k,m(In,k,m, xn,k,m) is

convex in In,k,m and xn,k,m whenever In,k,m > 0.

Now, if In,k,m = 0, in order to show convexity, we consider 2 points in the domain

of CSRA problem as (I
(1)
n,k,m, x

(1)
n,k,m) and (I

(2)
n,k,m, x

(2)
n,k,m). Then, for a given λ ∈ [0, 1],

we should have

λI
(1)
n,k,m Fn,k,m

(

I
(1)
n,k,m , x

(1)
n,k,m

)

+ (1− λ)I
(2)
n,k,mFn,k,m

(

I
(2)
n,k,m , x

(2)
n,k,m

)

≥
[

λI
(1)
n,k,m + (1− λ)I

(2)
n,k,m

]

Fn,k,m

(

λI
(1)
n,k,m + (1− λ)I

(2)
n,k,m , λx

(1)
n,k,m + (1− λ)x

(2)
n,k,m

)

(B.6)

In this case, without loss of generality, let us suppose that for a particular (n, k,m),

I1n,k,m = 0. Then, the above inequality is equivalent to

I
(2)
n,k,m Fn,k,m

(

I
(2)
n,k,m , x

(2)
n,k,m

)

≥ I
(2)
n,k,mFn,k,m

(

(1− λ)I
(2)
n,k,m , λx

(1)
n,k,m + (1− λ)x

(2)
n,k,m

)

.

(B.7)
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If I
(2)
n,k,m = 0, the above inequality is satisfied with equality. If not, it becomes

equivalent to

Fn,k,m

(

I
(2)
n,k,m, x

(2)
n,k,m

)

≥ Fn,k,m

(

(1− λ)I
(2)
n,k,m , λx

(1)
n,k,m + (1− λ)x

(2)
n,k,m

)

(B.8)

or

− E

{

Un,k,m

((

1− am exp

(

− bmγn,k
x
(2)
n,k,m

I
(2)
n,k,m

))

rm

)}

≥

−E

{

Un,k,m

((

1− am exp

(

−bmγn,k
[

x
(2)
n,k,m

I
(2)
n,k,m

+
λx

(1)
n,k,m

(1− λ)I
(2)
n,k,m

]))

rm

)}

(B.9)

In the above equation, the argument of Un,k,m(·) in the RHS is greater, if not equal,

than in the LHS. Since Un,k,m(·) is an increasing concave function, −Un,k,m(·) is a

decreasing convex function. Therefore, (B.9) is true.

The above proof shows that−In,k,mŨn,k,m (and, by extension In,k,m Fn,k,m(In,k,m, xn,k,m))

is convex in In,k,m and xn,k,m. Therefore, it is a convex function of I and x. Since the

primal objective function of the CSRA problem, i.e.,

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m)

is a sum of functions that are convex in I and x, it is also convex in I and x.

B.2 Proof of Lemma 2

Say that µ1 < µ2, where µ1, µ2 ∈ [µmin, µmax]. Recall from (3.6) that, after fixing

µ, the minimization problem reduces to

L(µ, I∗(µ),x∗(µ, I∗(µ)))

= min
{x�0}
I∈ICSRA

L(µ, I,x)

= min
{x�0}
I∈ICSRA

( ∑

n,k,m

xn,k,m − Pcon

)

µ+
∑

n,k,m

In,k,mFn,k,m(In,k,m, xn,k,m). (B.10)
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Suppose that µ = µ1, so that (from (B.10)) the optimal values of I∗(µ) and x∗(µ, I∗(µ))

are I∗(µ1) and x∗(µ1, I
∗(µ1)), respectively. Then, we know

L(µ1, I
∗(µ1),x

∗(µ1, I
∗(µ1))) ≤ L(µ1, I

∗(µ2),x
∗(µ2, I

∗(µ2))), (B.11)

since I∗(µ2) and x∗(µ2, I
∗(µ2)) are suboptimal values of I∗(µ) and x∗(µ, I∗(µ)). Simi-

larly, we can say that

L(µ2, I
∗(µ2),x

∗(µ2, I
∗(µ2))) ≤ L(µ2, I

∗(µ1),x
∗(µ1, I

∗(µ1))). (B.12)

Abbreviating

I∗n,k,m(µ)Fn,k,m

(
I∗(µ),x∗(µ, I∗(µ))

)

by G∗
n,k,m(µ), and using (B.10), we then have

−µ1Pcon +
∑

n,k,m

(

x∗
n,k,m(µ1, I

∗(µ1))µ1 +G∗
n,k,m(µ1)

)

≤ −µ1Pcon +
∑

n,k,m

(

x∗
n,k,m(µ2, I

∗(µ2))µ1 +G∗
n,k,m(µ2)

)

, (B.13)

and

−µ2Pcon +
∑

n,k,m

(

x∗
n,k,m(µ2, I

∗(µ2))µ2 +G∗
n,k,m(µ2)

)

≤ −µ2Pcon +
∑

n,k,m

(

x∗
n,k,m(µ1, I

∗(µ1))µ2 +G∗
n,k,m(µ1)

)

, (B.14)

Adding (B.13) and (B.14), we get

(µ1 − µ2)

(
∑

n,k,m

x∗
n,k,m(µ1, I

∗(µ1))− x∗
n,k,m(µ2, I

∗(µ2))

)

≤ 0. (B.15)

Since µ1 < µ2, we have

X∗
tot(µ1) ≥ X∗

tot(µ2). (B.16)

Therefore, X∗
tot(µ) is monotonically decreasing in µ.
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B.3 Proof of Lemma 3

To compare the utilities obtained by the proposed CSRA algorithm and the exact

CSRA solution, we compare the Lagrangian values achieved by the two solutions.

Recall µ∗ ∈ [µ, µ̄] ⊂ [µmin, µmax]. Therefore,

L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗)))− L(µ, I∗(µ),x∗(µ, I∗(µ))) ≥ 0, and

L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗)))− L(µ̄, I∗(µ̄),x∗(µ̄, I∗(µ̄))) ≥ 0. (B.17)

The solution of the proposed CSRA algorithm allocates resources such that the sum-

power constraint is satisfied while achieving a Lagrangian value of

L̂CSRA , λL(µ̄, I∗(µ̄),x∗(µ̄, I∗(µ̄))) + (1− λ)L(µ, I∗(µ),x∗(µ, I∗(µ))).

For any µ, notice that L(µ, I∗(µ),x∗(µ, I∗(µ))) = −U∗(µ) + (X∗
tot(µ)− Pcon)µ, where

U∗(µ) is the total utility achieved due to optimal power allocation at that µ. Since the

resource allocation obtained by the proposed CSRA algorithm and the exact CSRA

solution satisfy the sum-power constraint with equality, we have

U∗
CSRA = −L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))), and (B.18)

L̂CSRA = −ÛCSRA(µ, µ̄) + (X∗
tot(µ̄)− Pcon)λµ̄+ (X∗

tot(µ)− Pcon)(1− λ)µ

= −ÛCSRA(µ, µ̄) + (X∗
tot(µ̄)− Pcon)(µ̄− µ)λ. (B.19)

Equation (B.19) holds since λX∗
tot(µ̄)+(1−λ)X∗

tot(µ) = Pcon. From (B.18) and (B.19),

we get

0 ≤ U∗
CSRA − ÛCSRA(µ, µ̄) = −L(µ∗, I∗(µ∗),x∗(µ∗, I∗(µ∗))) + L̂CSRA

− (X∗
tot(µ̄)− Pcon)(µ̄− µ)λ. (B.20)
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From the above equation and (B.17), we have

0 ≤ U∗
CSRA − ÛCSRA(µ, µ̄) ≤ (Pcon −X∗

tot(µ̄))(µ̄− µ)λ ≤ (µ̄− µ)Pcon. (B.21)

B.4 Proof of Lemma 4

Let µ̃ ∈ [µmin, µmax] be any value of the Lagrangian dual variable for the CSRA

problem. Then, at µ̃, one of the following three cases hold.

1. For all n, |Sn(µ̃)| ≤ 1.

2. For some n, |Sn(µ̃)| > 1 but no two combinations in Sn(µ̃) have the same

allocated power.

3. For some n, |Sn(µ̃)| > 1 and at least two combinations in Sn(µ̃) have the same

allocated power.

We will now study each case individually.

B.4.1 Case I : |Sn(µ̃)| ≤ 1 ∀n.

In this case, we have I∗(µ̃) ∈ {0, 1}N×K×M that can be found by using (3.16).

Now, for any subchannel n, let us suppose that |Sn(µ̃)| = 0. Then, for all (k,m),

we have Vn,k,m(µ̃, p
∗
n,k,m(µ̃)) > 0. Since p∗n,k,m(µ) is a continuous function of µ,

Vn,k,m(µ, p
∗
n,k,m(µ)) is a continuous function of µ. By definition [84], if f(·) is a function

continuous at x0, then for every ν > 0, we can fix a δ such that

|f(x)− f(x0)| < ν, whenever |x− x0| < δ.

In our setting, therefore, we can fix a δ1n,k,m (> 0) such that

∣
∣Vn,k,m(µ, p

∗
n,k,m(µ))− Vn,k,m(µ̃, p

∗
n,k,m(µ̃))

∣
∣ <

1

2
min
n,k,m

Vn,k,m(µ̃, p
∗
n,k,m(µ̃)),
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whenever |µ− µ̃| < δ1n,k,m. This implies

Vn,k,m(µ, p
∗
n,k,m(µ)) > 0, whenever |µ− µ̃| < δ1n,k,m. (B.22)

In other words, |Sn(µ)| = |Sn(µ̃)| = 0.

Now, let us suppose that |Sn(µ̃)| = 1 and (k∗(n), m∗(n)) ∈ Sn(µ̃). Then, for any

other combination (k,m), let us define

Wn,k,m(µ̃) , Vn,k,m(µ̃, p
∗
n,k,m(µ̃))− Vn,k∗(n),m∗(n)(µ̃, p

∗
n,k∗(n),m∗(n)(µ̃)).

Clearly, Wn,k,m(µ) is a continuous function of µ and takes on a positive value at

µ = µ̃ for all (k,m) 6= (k∗(n), m∗(n)). Therefore, using arguments from the scenario

of |Sn(µ̃)| = 0 (see (B.22)), we can fix a δ1n,k,m > 0 such that

Wn,k,m(µ) > 0, whenever |µ− µ̃| < δ1n,k,m,

for all (k,m) 6= (k∗(n), m∗(n)). In other words, Sn(µ) = {(k∗(n), m∗(n))}.

Selecting δ1 = minn,k,m δ1n,k,m, we have that

|Sn(µ)| ≤ 1 ∀n, whenever |µ− µ̃| < δ1. (B.23)

Moreover, if µ1, µ2 ∈ (µ−δ1, µ+δ1), we have Sn(µ1) = Sn(µ2) for all n and |Sn(µ1)| ≤

1. This implies that I∗(µ1), I
∗(µ2) ∈ {0, 1}N×K×M and I∗(µ1) = I∗(µ2).

B.4.2 Case II : For some n, |Sn(µ̃)| > 1 but no two combina-
tions in Sn(µ̃) have the same allocated power.

From case I, ∀(k,m) /∈ Sn(µ̃), we can fix a δ1 (> 0) such that Vn,k,m(µ, p
∗
n,k,m(µ)) >

0 whenever |µ− µ̃| < δ1. For other combinations, let us start by giving the following

definitions.

(k∗
max
(n), m∗

max
(n)) , argmax

(k,m)∈Sn(µ̃)

p∗n,k,m(µ̃), and

(k∗
min
(n), m∗

min
(n)) , argmin

(k,m)∈Sn(µ̃)

p∗n,k,m(µ̃).
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We will now show that we can fix a δ2 (> 0) such that Sn(µ) = {(k∗
max
(n), m∗

max
(n))}

whenever µ ∈ (µ̃−δ2, µ̃) and whenever µ ∈ (µ̃, µ̃+δ2), either Sn(µ) = {(k∗
min
(n), m∗

min
(n))}

or Sn(µ) = φ.

Consider the case when µ < µ̃. Let us define

Tn,k,m(µ, µ̃) ,
Vn,k,m(µ, p

∗
n,k,m(µ))− Vn,k,m(µ̃, p

∗
n,k,m(µ̃))

µ− µ̃
.

Note that limµ→µ̃ Tn,k,m(µ, µ̃) =
∂Vn,k,m(µ,p∗n,k,m(µ))

∂µ

∣
∣
∣
µ=µ̃

, where

∂Vn,k,m(µ, p
∗
n,k,m(µ))

∂µ

= p∗n,k,m(µ) + µ
∂p∗n,k,m(µ)

∂µ
(B.24)

−ambmrm E
{

U ′
n,k,m

(
(1− ame

−bmp∗n,k,m(µ)γn,k)rm
)
γn,ke

−bmp∗n,k,m(µ)γn,k

}∂p∗n,k,m(µ)

∂µ
.

Now, if (3.11) is satisfied for a non-negative value of p̃n,k,m(µ), i.e., p∗n,k,m(µ) =

p̃n,k,m(µ), then

lim
µ→µ̃

Tn,k,m(µ, µ̃) =
∂Vn,k,m(µ, p

∗
n,k,m(µ))

∂µ
= p∗n,k,m(µ). (B.25)

On the contrary, if (3.11) is not satisfied for a non-negative value of p̃n,k,m(µ), then µ >

ambmrmU
′
n,k,m

(
(1− am)rm

)
E{γn,k}. Since the RHS of (3.11) is a continuous function

of p̃n,k,m(µ), p
∗
n,k,m(µ) = 0 in a small neighborhood around µ giving

∂p∗n,k,m(µ)

∂µ
= 0.

Therefore, (B.25) is true for all possible values of µ.

Then, for any (k,m) ∈ Sn(µ̃) \ {(k∗
max
(n), m∗

max
(n))}, we have

lim
µ→µ̃

Vn,k∗max(n),m
∗
max(n)(µ, p

∗
n,k∗max(n),m

∗
max(n)

(µ))− Vn,k,m(µ, p
∗
n,k,m(µ))

µ− µ̃
(B.26)

= lim
µ→µ̃

Tn,k∗max(n),m
∗
max(n)(µ, µ̃)− Tn,k,m(µ, µ̃)

= p∗n,k∗max(n),m
∗
max(n)

(µ̃)− p∗n,k,m(µ̃) (B.27)

> 0,
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where (B.27) follows from (B.25). Note that the denominator in (B.26) is less than

zero. Therefore, we can fix a δ1n,k,m (> 0) such that

Vn,k∗max(n),m
∗
max(n)(µ, pn,k∗max(n),m

∗
max(n)(µ)) < Vn,k,m(µ, p

∗
n,k,m(µ)), (B.28)

whenever 0 < µ̃−µ < δ1n,k,m. Since, this is true for all (k,m) ∈ Sn(µ̃)\{(k∗
max
(n), m∗

max
(n))},

selecting δ1 = min{δ1,minn,k,m δ1n,k,m}, we have Sn(µ) = {(k∗
max
(n), m∗

max
(n))} when-

ever µ ∈ (µ̃− δ1, µ̃). Note that Vn,k,m(µ, p
∗
n,k,m(µ)) being an increasing function of µ,

implying that

Vn,k∗max(n),m
∗
max(n)(µ, pn,k∗max(n),m

∗
max(n)(µ)) ≤ Vn,k∗max(n),m

∗
max(n)(µ̃, pn,k∗max(n),m

∗
max(n)(µ̃)) ≤ 0.

Now, consider that µ > µ̃. Using the arguments from the above discussion, we

obtain that for any (k,m) ∈ Sn(µ̃) \ {(k∗
min
(n), m∗

min
(n))}, there exists a δ2n,k,m, such

that

Vn,k∗
min

(n),m∗
min

(n)(µ, pn,k∗
min

(n),m∗
min

(n)(µ)) < Vn,k,m(µ, p
∗
n,k,m(µ)),

whenever 0 < µ− µ̃ < δ2n,k,m. Let Vn,k,m(µ̃, p
∗
n,k,m(µ̃)) < 0. Then we can fix a δ3 (> 0)

such that

Vn,k∗
min

(n),m∗
min

(n)(µ, pn,k∗
min

(n),m∗
min

(n)(µ)) < 0,

whenever 0 ≤ µ − µ̃ < δ3. Selecting δ2 = min{δ1,minn,k,m δ2n,k,m, δ3}, we then have

Sn(µ) = {(k∗
min
(n), m∗

min
(n))} whenever µ ∈ (µ̃, µ̃+δ2). However, if Vn,k,m(µ̃, p

∗
n,k,m(µ̃)) =

0, then selecting δ2 = min{δ1,minn,k,m δ2n,k,m}, we have Sn(µ) = φ whenever µ ∈

(µ̃, µ̃+ δ2). In both situations, if µ1, µ2 ∈ (µ̃, µ̃+ δ2), we get Sn(µ1) = Sn(µ2).

Summarizing the discussion for case II, selecting δ2 = min{δ1, δ2}, we have I∗(µ) ∈

{0, 1}N×K×M whenever |µ− µ̃| < δ2, µ 6= µ̃. Furthermore, if µ1, µ2 ∈ (µ̃− δ2, µ̃) or if

µ1, µ2 ∈ (µ̃, µ̃+ δ2), then Sn(µ1) = Sn(µ2) ∀n and I∗(µ1) = I∗(µ2).
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B.4.3 Case III : For some n, |Sn(µ̃)| > 1 and at least two
combinations in Sn(µ̃) have the same allocated power.

Let us say that (k1, m1) and (k2, m2) lie in the set Sn(µ̃) for some n and p∗n,k1,m1
(µ̃) =

p∗n,k2,m2
(µ̃). Let us also assume that I∗n,k1,m1

(µ̃) and I∗n,k2,m2
(µ̃) are the corresponding

optimal allocations. Then, their contribution towards the optimal Ln(µ̃, ·) is

I∗n,k1,m1
(µ̃)Vn,k1,m1(µ̃, p

∗
n,k1,m1

(µ̃)) + I∗n,k2,m2
(µ̃)Vn,k2,m2(µ̃, p

∗
n,k2,m2

(µ̃))

= (I∗n,k1,m1
(µ̃) + I∗n,k2,m2

(µ̃))Vn,k1,m1(µ̃, p
∗
n,k1,m1

(µ̃)).

Moreover, the total power allocated is

I∗n,k1,m1
(µ̃)p∗n,k1,m1

(µ̃) + I∗n,k2,m2
(µ̃)p∗n,k2,m2

(µ̃)

= (I∗n,k1,m1
(µ̃) + I∗n,k2,m2

(µ̃))p∗n,k1,m1
(µ̃). (B.29)

Therefore, we can ignore (k2, m2) and give its allocation to (k1, m1) while maintaining

optimality. Mathematically, the allocation Ĩ∗(µ̃) defined by

Ĩ∗n,k,m(µ̃) =







I∗n,k,m(µ̃) (n, k,m) /∈ {(n, k1, m1), (n, k2, m2)}
I∗n,k1,m1

(µ̃) + I∗n,k2,m2
(µ̃) (n, k,m) = (n, k1, m1)

0 (n, k,m) = (n, k2, m2),

(B.30)

also achieves the optimal Lagrangian value at µ = µ̃ and has the same allocated

sum-power. Note that this can be repeated for every subchannel n and for each n,

over all such combinations with equal allocated powers.

Combining cases I, II, and III, we can fix a δ = min{δ1, δ2} for every µ̃ such that

I∗(µ) ∈ {0, 1}N×K×M whenever |µ−µ̃| < δ, µ 6= µ̃. Moreover, for all µ1, µ2 ∈ (µ̃−δ, µ̃),

there exists I∗(µ1), I
∗(µ2) ∈ {0, 1}N×K×M such that I∗(µ1) = I∗(µ2). The same

property holds when both µ1, µ2 ∈ (µ̃, µ̃+ δ).
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B.5 Proof of Lemma 5

The proof involves the use of generalized Lagrange multiplier method. From (3.6),

we have

(

I∗(µ),x∗(µ, I∗(µ))
)

= argmin
x�0

I∈ICSRA

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m)+

(
∑

n,k,m

xn,k,m−Pcon

)

µ,

(B.31)

where Fn,k,m(·, ·) is defined in (3.4). Since, I∗(µ) ∈ {0, 1}N×K×M by assumption and

I∗(µ) ∈ ICSRA, we have I∗(µ) ∈ IDSRA ⊂ ICSRA. Therefore,
(

I∗(µ),x∗(µ, I∗(µ))
)

= argmin
x�0

I∈IDSRA

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m)+

(
∑

n,k,m

xn,k,m−Pcon

)

µ.

(B.32)

Reference [85] clearly states that the theory of Lagrangian extends to arbitrary real-

valued functions (differentiable or not) over arbitrary constraint sets. In particular,

applying [85, Theorem 1] to (B.32), we deduce that I∗ = I∗(µ) and X∗ = x∗(µ, I∗(µ),

where (I∗,X∗) solves the following (primal) problem

(I∗,X∗) = argmin
{X�0}
I∈IDSRA

∑

n,k,m

In,k,mFn,k,m(In,k,m,Xn,k,m)

s.t.
∑

n,k,m

Xn,k,m ≤
∑

n,k,m

x∗
n,k,m(µ, I

∗(µ)). (B.33)

Substituting back Xn,k,m = In,k,mPn,k,m in the above equation, we get

(I∗(µ),p∗(µ, I∗(µ)) = argmin
{X�0}
I∈IDSRA

−
∑

n,k,m

In,k,mE
{

Un,k,m

(
(1− ame

−bmPn,k,mγn,k)rm
)}

s.t.
∑

n,k,m

In,k,mPn,k,m ≤
∑

n,k,m

x∗
n,k,m(µ, I

∗(µ)), (B.34)

where

p∗n,k,m(µ, I
∗(µ)) =

{x∗
n,k,m(µ,I∗(µ))

I∗n,k,m(µ)
if I∗n,k,m(µ) 6= 0

0 otherwise.
(B.35)
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B.6 Proof of Lemma 6

Let us denote limµ→µ̄ ÛDSRA(µ, µ̄) by ÛDSRA. The left inequality in the lemma is

straightforward since U∗
DSRA ≥ ÛDSRA(µ, µ̄) ∀µ, µ̄. Now, if |Sn(µ

∗)| ≤ 1 ∀n, then we

have U∗
DSRA = U∗

CSRA = ÛDSRA, ensuring that the solution obtained via the proposed

DSRA algorithm is optimal in the limit µ, µ̄ → µ∗. However, when |Sn(µ
∗)| > 1

for some n, Pcon lies in one of the “gaps” as mentioned in Fig. 3.3 and I∗CSRA /∈

IDSRA. In this case, we have 0 ≤ U∗
DSRA − ÛDSRA ≤ U∗

CSRA − ÛDSRA. Let U
∗(I) be the

optimal utility achieved for user-MCS allocation matrix I ∈ IDSRA. We recall from

Section 3.4.3 that, at µ∗, the allocation Imin(µ∗) is one of possibly many values of I

minimizing L(µ∗, I,x∗(µ∗, I)). Thus, U∗
CSRA = −L(µ∗, Imin(µ∗),x∗(µ∗, Imin(µ∗))). For

brevity in this proof, let us denote Imin(µ∗) and Imax(µ∗) (∈ IDSRA), defined in (3.30),

by Imin and Imax, respectively. Therefore, ÛDSRA = max{U∗(Imin), U∗(Imax)}. This gives

us

U∗
CSRA − ÛDSRA ≤ U∗

CSRA − U∗(Imin)

= −L(µ∗, Imin,x∗(µ∗, Imin)) + LImin(µ∗
Imin,x

∗(µ∗
Imin)))

= −L(µ∗, Imin,x∗(µ∗, Imin)) + L(µ∗
Imin , I

min,x∗(µ∗
Imin, I

min)),(B.36)

where, for (B.36), we use the equivalence between L(µ, I,x) in (3.5) and LI(µ,x) in

(3.36). Note that µ∗
Imin ≤ µ∗, since the total optimally allocated power for Imin at

µ = µ∗ is less than or equal to Pcon and the total optimally allocated power for any
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given I is a decreasing function of µ. Plugging L(·, ·, ·) from (3.5) into (B.36), we get

U∗
CSRA − ÛDSRA

≤ −
[

− µ∗Pcon +
∑

n,k,m

Imin

n,k,m

(

− Ūn,k,m(p
∗
n,k,m(µ

∗)) + µ∗p∗n,k,m(µ
∗)
)]

(B.37)

+
[

− µ∗
IminPcon +

∑

n,k,m

Imin

n,k,m

(

− Ūn,k,m(p
∗
n,k,m(µ

∗
Imin)) + µ∗(Imin)p∗n,k,m(µ

∗
Imin)

)]

,

where, Ūn,k,m(x) = E
{
Un,k,m

(
(1 − ak,me

−bk,mxγn,k)rk,m
)}

. Using the definition of

X∗
tot(I, µ) in (3.41), we have X∗

tot(I
min, µ∗) ≤ Pcon andX∗

tot(I
min, µ∗

Imin) = Pcon. Therefore,

(B.37) can be re-written as

U∗
CSRA − ÛDSRA (B.38)

≤ µ∗(Pcon −X∗
tot(I

min, µ∗)
)
−
∑

n,k,m

Imin

n,k,m

[

Ūn,k,m(p
∗
n,k,m(µ

∗
Imin))− Ūn,k,m(p

∗
n,k,m(µ

∗))
]

.

Calculating the first two derivatives of Ūn,k,m(x) with respect to x, we find that it

is a strictly-increasing concave function of x. Therefore, if x1 ≤ x2, one can write

that Ūn,k,m(x2) − Ūn,k,m(x1) ≥ (x2 − x1)Ū
′
n,k,m(x2). Plugging x1 = p∗n,k,m(µ

∗) and

x2 = p∗n,k,m(µ
∗
Imin) into this inequality, we get

Ūn,k,m(p
∗
n,k,m(µ

∗
Imin))− Ūn,k,m(p

∗
n,k,m(µ

∗))

≥
(

p∗n,k,m(µ
∗
Imin)− p∗n,k,m(µ

∗)
)∂Ūn,k,m(x)

∂x

∣
∣
∣
∣
x=p∗n,k,m(µ∗

Imin
)

(B.39)

From (B.38) and (B.39), we then get

U∗
CSRA − ÛDSRA (B.40)

≤ µ∗(Pcon −X∗
tot(I

min, µ∗)
)
−
∑

n,k,m

Imin

n,k,mŪ
′
n,k,m

(
p∗n,k,m(µ

∗
Imin)

)(

p∗n,k,m(µ
∗
Imin)− p∗n,k,m(µ

∗)
)

.
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Evaluating Ū ′
n,k,m

(
p∗n,k,m(µ

∗
Imin)

)
, we find

∂Ūn,k,m(x)

∂x

∣
∣
∣
∣
x=p∗n,k,m(µ∗

Imin
)

= ak,mbk,mrk,mE
{
U ′
n,k,m

(
(1− ak,me

−bk,mp∗n,k,m(µ∗
Imin

)γn,k)rk,m
)

× γn,ke
−bk,mp∗n,k,m(µ∗

Imin
)γn,k

}

≥ µmin. (B.41)

From (B.40) and (B.41), we finally obtain

U∗
CSRA − ÛDSRA ≤ (µ∗ − µmin)

(
Pcon −X∗

tot(I
min, µ∗)

)

≤ (µmax − µmin)Pcon. (B.42)
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Appendix C: Proofs in Chapter 5

C.1 Proof of Theorem 1

By ignoring the interference, we have

Cx,y,ν(U,P) ≤
B∑

i=1

N∑

n=1

log
(

1 + Pi,n γi,Ui,n,n

)

(C.1)

Taking expectation w.r.t. {x,y, ν}, we have

C∗ = E{Cx,y,ν(U,P)}

≤
B∑

i=1

N∑

n=1

max
k

E
{

log
(
1 + Pcon γi,k,n

)}

≤
B∑

i=1

N∑

n=1

E
{

max
k

log
(
1 + Pconγi,k,n

)}

(C.2)

≤
B∑

i=1

N∑

n=1

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

, (C.3)

where (C.2) follows because, for any function f(·, ·), maxk E{f(k, ·)} ≤ E{maxk f(k, ·)},

and (C.3) follows because log(·) is a non-decreasing function. One can also construct

an alternate upper bound by applying Jensen’s inequality to the RHS of (C.1) as

follows:

Cx,y,ν(U,P) ≤ N
B∑

i=1

log
(

1 +
1

N

∑

n

Pi,n γi,Ui,n,n

)

(C.4)

≤ N

B∑

i=1

log
(

1 +
Pcon

N
max
n,k

γi,k,n

)

, (C.5)
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since
∑

n Pi,n ≤ Pcon. Therefore,

C∗ = E{Cx,y,ν(U,P)}

≤ N

B∑

i=1

E

{

log
(

1 +
Pcon

N
max
n,k

γi,k,n

)}

. (C.6)

Combining (C.3) and (C.6), we obtain

C∗ ≤ min

{
∑

i,n

Ex,y,ν

{

log
(
1 + Pcon max

k
γi,k,n

)}

,

N
∑

i

Ex,y,ν

{

log
(

1 +
Pcon

N
max
n,k

γi,k,n

)}}

. (C.7)

For lower bound, let Pcon/N power be allocated to each resource-block by every

BS. Then,

Cx,y,ν(U,P) ≥
B∑

i=1

N∑

n=1

log

(

1 +
Pcon γi,ki,n,n

N + Pcon

∑

j 6=i γj,ki,n,n

)

, (C.8)

where ki,n is any other user allocated on subchannel n by BS i. Note that, due to sub-

optimal power allocation, all user-allocation strategies {ki,n, ∀i, n} achieve a utility

that is lower that Cx,y,ν(U,P). To handle (C.8) easily, we introduce an indicator

variable Ii,k,n(x,y, ν) which equals 1 if k = ki,n, otherwise takes the value 0. Since,

each BS i can schedule at-most one user on any resource block n in a given time-slot,

we have
∑

k Ii,k,n(x,y, ν) = 1 ∀ i, n. Now, (C.8) can be re-written as:

Cx,y,ν(U,P) ≥
B∑

i=1

N∑

n=1

K∑

k=1

Ii,k,n(x,y, ν) log

(

1 +
Pcon γi,k,n

N + Pcon

∑

j 6=i γj,k,n

)

.

Taking expectation w.r.t. (x,y, ν), we get

C∗ ≥
∑

i,n,k

E

{

Ii,k,n(x,y, z) log

(

1 +
Pcon γi,k,n

N + Pcon

∑

j 6=i γj,k,n

)}

≥
∑

i,n,k

E

{

Ii,k,n(x,y, z)
log
(
1 + Pcon γi,k,n

)

N + Pcon

∑

j 6=i γj,k,n

}

. (C.9)
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Here, the last equation holds because for any non-decreasing concave function V (·)

(for example, V (x) = log(1 + x)) and for all d1, d2 > 0, we have

V (d1)− V (0) ≤
[

V
(d1
d2

)

− V (0)
]

d2

=⇒ V
(d1
d2

)

≥ V (d1)− V (0)

d2
+ V (0). (C.10)

Now, 1

N+Pcon

∑

j 6=i γj,k,n

(
yj,k,n

) ≤ 1. Therefore,

C∗ ≥
∑

i,n,k

E

{

Ii,k,n(x,y, ν) log
(
1 + Pcon γi,k,n

)

N + Pcon

∑

j 6=i γj,k,n

}

. (C.11)

To obtain the best lower bound, we now select the user ki,n to be the one for which

γi,k,n attains the highest value for every combination (i, n), i.e.,

Ii,k,n(x,y, ν) =

{

1 if k = argmaxk′ γi,k′,n

0 otherwise.
(C.12)

Using (C.12) in (C.11), we get the lower bound in Theorem 1.

C.2 Proof of Theorem 2 and Theorem 3

The proof outline is as follows. We first prove three lemmas. The first lemma,

i.e, Lemma 11, uses one-sided variant of Chebyshev’s inequality (also called Cantelli’s

inequality) and Theorem 1 to show that

C∗ ≥ fDN
lo (r, B,N)

∑

i,n

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

,

where C∗ is expected achievable sum-rate of the system. The second lemma, i.e,

Lemma 12, finds the cumulative distribution function (CDF) of channel-SNR, de-

noted by Fγi,k,n(·), under Rayleigh-distributed |νi,k,n| and a truncated path-loss model.

The third lemma, i.e, Lemma 13, uses Lemma 12 and extreme-value theory to show
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that (maxk γi,k,n− lK) converges in distribution to a limiting random variable with a

Gumbel type cdf, that is given by

exp(−e−xr2α0 /β2

), x ∈ (−∞,∞), (C.13)

where Fγi,k,n(lK) = 1 − 1
K
. Thereafter, we use Theorem 1, Lemma 11, Lemma 13,

and [67, Theorem A.2] to obtain the final result.

Now, we give details of the full proof.

Lemma 11. In a dense-network, the expected achievable sum-rate is lower bounded
as:

C∗ ≥ fDN
lo (r, B,N)

∑

i,n

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

, (C.14)

where r > 0 is a fixed number, fDN
lo (r, B,N) = r2

(1+r2)(N+Pconβ2r−2α
0 (µ+rσ)B)

, µ and σ are

the mean and standard-deviation of |νi,k,n|2.
Proof. We know that

∑

j 6=i

γj,k,n = β2
∑

j 6=i

R−2α
j,k |νj,k,n|2 ≤ β2r−2α

0

∑

j 6=i

|νj,k,n|2. (C.15)

Therefore, the lower bound in Theorem 1 reduces to the following equation.

C∗ ≥
∑

i,n,k

E

{

maxk log
(
1 + Pconγi,k,n

)

N + Pconβ2r−2α
0

∑

j 6=i |νj,k,n|2

}

. (C.16)

Now, we apply one-sided variant of Chebyshev’s inequality (also called Cantelli’s
inequality) to the term

∑

j 6=i |νj,k,n|2 in the denominator. By assumption, |νi,k,n|2 are
i.i.d. across i, k, n with mean µ and variance σ. Hence, applying Cantelli’s inequality,
We have

Pr
(∑

j 6=i

|νj,k,n|2 > (B − 1)(µ+ rσ)
)

≤ 1

1 + r2

=⇒ Pr
(∑

j 6=i

|νj,k,n|2 > (µ+ rσ)B
)

≤ 1

1 + r2
(C.17)

=⇒ Pr
(∑

j 6=i

|νj,k,n|2 ≤ (µ+ rσ)B
)

≥ r2

1 + r2
(C.18)

where r > 0 is a fixed number.
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Now, we break the expectation in (C.16) into two parts — one with
∑

j 6=i |νj,k,n|2 >
(µ + rσ)B and other with

∑

j 6=i |νj,k,n|2 ≤ (µ + rσ)B. We then ignore the first part
to obtain another lower bound. Therefore, we now have

C∗ ≥
B∑

i=1

N∑

n=1

E

{
maxk log

(
1 + Pcon γi,k,n

)

N + (µ+ rσ)BPconβ2r−2α
0

∣
∣
∣
∣
∑

j 6=i |νj,k,n|2≤(µ+rσ)B

}

× Pr
(∑

j 6=i

|νj,k,n|2 ≤ (µ+ rσ)B
)

≥
r2

1+r2

N + (µ+ rσ)BPconβ2r−2α
0

B∑

i=1

N∑

n=1

E

{

max
k

log
(
1 + Pcon γi,k,n

)
}

(C.19)

= fDN
lo (r, B,N)

∑

i,n

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

, (C.20)

where (C.19) follows because
∑

j 6=i |νj,k,n|2 is independent of νi,k,n (and hence, inde-
pendent of γi,k,n). Note that for Rayleigh fading channels, µ = σ = 1.

Lemma 11 and earlier proved Theorem 1 show that the lower and upper bounds

on C∗ are functions of maxk γi,k,n. To compute maxk γi,k,n for large K, we prove

Lemma 12 and Lemma 13.

Lemma 12. Under Rayleigh fading, i.e., νi,k,n ∼ CN (0, 1), the CDF of γi,k,n is given
by

Fγi,k,n(γ) = 1− r20
p2
e
− γ

β2r−2α
0 − 1

αβ2p2

∫ β2r−2α
0

β2

(p−d)2α

e−
γ
g

( g

β2

)−1− 1
α
dg

+

∫ β2

(p−d)2α

β2

(p+d)2α

exp(−γ/g)ds(g), (C.21)

where d =
√

a2i + b2i , and

s(g) =
1

πp2





( g

β2

)−1/α

cos−1

(
d2 +

(
g
β2

)−1/α − p2

2d
(

g
β2

)−1/2α

)

+ p2 cos−1

(
d2 + p2 −

(
g
β2

)−1/α

2dp

)

− 1

2

√
(

p + d−
( g

β2

)−1/2α)(

p+
( g

β2

)−1/2α

− d
)

×
√
(

d+
( g

β2

)−1/2α

− p
)(

d+ p+
( g

β2

)−1/2α)



 .
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p
p− R

Base Station (BS)

Users

O

Figure C.1: OFDMA downlink system with K users and B base-stations.

Proof. We assume that the users are distributed uniformly in a circular area of radius
p and there are B base-stations in that area as shown in Fig. C.1.

The probability density function of the user-coordinates (xk, yk) can be written as

f(xk,yk)

(
x, y
)
=

{
1

πp2
x2 + y2 ≤ p2

0 otherwise.
(C.22)

Note that around any base-station, the users are distributed at-least within a distance
R (R > r0). Hence, p− d = p−

√

a2i + b2i ≥ R > r0 for all i. Now,

γi,k,n =

Gi,k
︷ ︸︸ ︷
(

max
{

r0,
√

(xk − ai)2 + (yk − bi)2
}

︸ ︷︷ ︸

Ri,k

)−2α

β2 |νi,k,n|2 (C.23)

= min
{

r−2α
0 ,

(
(xk − ai)

2 + (yk − bi)
2
)−α
}

β2|νi,k,n|2. (C.24)

We now compute the probability density function of Gi,k (= β2R−2α
i,k ).

Pr(Gi,k > g)

= Pr

(

r−2α
0 >

g

β2

)

× Pr

(
(
(xk − ai)

2 + (yk − bi)
2
)−α

>
g

β2

)

= Pr

(

r0 <
( g

β2

)−1/2α
)

× Pr

(
√

(xk − ai)2 + (yk − bi)2 <
( g

β2

)−1/2α
)

=

{

0 if g ≥ β2r−2α
0

Pr
(√

(xk − ai)2 + (yk − bi)2 <
(

g
β2

)−1/2α
)

otherwise.
(C.25)
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Now, Pr
(√

(xk − ai)2 + (yk − bi)2 <
(

g
β2

)−1/2α
)

is basically the probability that the

distance between the user k and BS i is less than
(

g
β2

)−1/2α
. Since, the users are

uniformly distributed, this probability is precisely equal to 1
πp2

times the intersection

area of the overall area (of radius p around O) and a circle around BS i with a radius

of
(

g
β2

)−1/2α
. This is shown as the shaded region in Fig. C.2.
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(ai, bi)

p

d

(xk, yk)

Figure C.2: System Layout. The BS i is located at a distance of d from the center
with the coordinates (ai, bi), and the user is stationed at (xk, yk).

Therefore, we have:

Pr(Gi,k > g) =







1 if
(

g
β2

)−1/2α ∈ (p + d,∞)

s(g) if
(

g
β2

)−1/2α ∈ (p− d, p+ d]
(

g
β2

)−1/α 1
p2

if
(

g
β2

)−1/2α ∈ (r0, p− d]

0 if
(

g
β2

)−1/2α ∈ [0, r0],

(C.26)

where s(g) equals

1

πp2





(
g

β2

)−1/α

cos−1

(

d2 +
(

g
β2

)−1/α − p2

2d
(

g
β2

)−1/2α

)

+ p2 cos−1

(

d2 + p2 −
(

g
β2

)−1/α

2dp

)

− 1

2

√
(

p+ d−
( g

β2

)−1/2α
)(

p+
( g

β2

)−1/2α

− d

)

×
√
(

d+
( g

β2

)−1/2α

− p

)(

d+ p+
( g

β2

)−1/2α
)


 . (C.27)
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The CDF of Gi,k can now be written as

FGi,k
(g) =







0 if g ∈
[
0, β2(p+ d)−2α

)

1− s(g) if g ∈
[
β2(p+ d)−2α, β2(p− d)−2α

)

1−
(

g
β2

)−1/α 1
p2

if g ∈
[
β2(p− d)−2α, β2r−2α

0

)

1 if g ∈
[
β2r−2α

0 ,∞
)
,

(C.28)

A plot of the above CDF is shown in Fig. C.3.

1

β2(p + d)−2α

β2(p− d)−2α

β2r−2α0

1− r20
p2

1− (p−d)2
p2

0 g

Pr(Gi,k ≤ g)

Figure C.3: Cumulative distribution function of Gi,k.

The probability density function of Gi,k can be written as follows:

fGi,k
(g) =







0 if g ∈
[
0, β2(p+ d)−2α

)

−ds(g)
dg

if g ∈
[
β2(p+ d)−2α, β2(p− d)−2α

)

1
αβ2p2

(
g
β2

)−1−1/α
if g ∈

[
β2(p− d)−2α, β2r−2α

0

)

r20
p2

if g = β2r−2α
0

0 if g > β2r−2α
0 ,

(C.29)

where ds(g)
dg
≤ 0. The pdf of Gi,k has a discontinuity of the first-kind at β2r−2α

0 (where

it takes an impulse value), and is continuous in [β2(p + d)−2α, β2r−2α
0 ). At all other

points, it takes the value 0.
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Using (C.29), the cumulative distribution function of γi,k,n, i.e., Fγi,k,n(γ) (when
γ ≥ 0) can be written as

Fγi,k,n(γ)

=

∫

p
(

|νi,k,n|2 ≤
γ

g

)

fGi,k
(g)dg (C.30)

=

∫
(
1− e−γ/g

)
fGi,k

(g)dg (C.31)

= 1−
∫

e−γ/gfGi,k
(g)dg (C.32)

= 1− r20
p2
e
− γ

β2r
−2α
0 −

∫ β2r−2α
0

β2(p−d)−2α

e−γ/g 1

αβ2p2
( g

β2

)−1−1/α
dg

+

∫ β2(p−d)−2α

β2(p+d)−2α

e−γ/gds(g). (C.33)

Lemma 13. Let γi,k,n be a random variable with a cdf defined in Lemma 12. Then,

the growth function
1−Fγi,k,n

(γ)

fγi,k,n (γ)
converges to a constant β2r−2α

0 as γ → ∞, and γi,k,n

belongs to a domain of attraction [86]. Furthermore, the cdf of (maxk γi,k,n − lK)
converges in distribution to a limiting random variable with a Gumbel type cdf, that
is given by

exp(−e−xr2α0 /β2

), x ∈ (−∞,∞), (C.34)

where lK is such that Fγi,k,n(lK) = 1− 1/K. In particular, lK = β2r−2α
0 log

Kr20
p2

.

Proof. We have from Lemma 12

Fγi,k,n(γ)

= 1− r20
p2
e
− γ

β2r−2α
0 −

∫ β2r−2α
0

β2(p−d)−2α

e−γ/g 1

αβ2p2
( g

β2

)−1−1/α
dg

+

∫ β2(p−d)−2α

β2(p+d)−2α

e−γ/gs′(g)dg

= 1− r20
p2
e
− γ

β2r
−2α
0 −

∫ β2r−2α
0

β2(p−d)−2α

e−γ/g 1

αβ2p2
( g

β2

)−1−1/α
dg

+ s(g)e−γ/g
∣
∣
∣

β2(p−d)−2α

β2(p+d)−2α
− γ

∫ β2(p−d)−2α

β2(p+d)−2α

e−γ/gs(g)

g2
dg (C.35)

= 1− r20
p2
e
− γ

β2r−2α
0 −

∫ β2r−2α
0

β2(p−d)−2α

e−
γ
g

1

αβ2p2
( g

β2

)−1− 1
αdg

+ e
− γ

β2(p−d)−2α
(p− d)2

p2
− e

− γ

β2(p+d)−2α − γ

∫ β2(p−d)−2α

β2(p+d)−2α

e−
γ
g s(g)

g2
dg, (C.36)
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where
r20
p2

< (p−d)2

p2
≤ s(g) ≤ 1 (see Fig. C.3). Now, we claim that

lim
γ→∞

(
1− Fγi,k,n(γ)

)
e

γ

β2r−2α
0 =

r20
p2
. (C.37)

It is clear that the first two terms in (C.36) contribute everything to the limit in
(C.37). We will consider the rest of the terms now and show that they contribute
zero towards the limit in RHS of (C.37). First, considering the 4th, 5th, and 6th terms,
we have

lim
γ→∞

e
γ

β2r−2α
0 ×

∣
∣
∣
∣
∣
e
− γ

β2(p−d)−2α
(p− d)2

p2
− e

− γ

β2(p+d)−2α − γ

∫ β2(p−d)−2α

β2(p+d)−2α

e−
γ
g s(g)

g2
dg

∣
∣
∣
∣
∣

≤ lim
γ→∞

e
γ

β2r−2α
0

(∣
∣
∣
∣
∣
e
− γ

β2(p−d)−2α
(p− d)2

p2

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
e
− γ

β2(p+d)−2α

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
γ

∫ β2(p−d)−2α

β2(p+d)−2α

e−
γ
g s(g)

g2
dg

∣
∣
∣
∣
∣

)

(C.38)

≤ lim
γ→∞

(p− d)2

p2
e
− γ

β2 ((p−d)2α−r2α0 )
+ e

− γ

β2 ((p+d)2α−r2α0 )

+ γ
e
− γ

β2 ((p−d)2α−r2α0 )

β4(p+ d)−4α
(C.39)

= 0. (C.40)

Now, we consider the third term in (C.36). We will show that

lim
γ→∞

e
γ

β2r−2α
0 ×

∫ β2r−2α
0

β2(p−d)−2α

e−
γ
g

1

αβ2p2

( g

β2

)−1− 1
α
dg

︸ ︷︷ ︸

T (γ)

= 0. (C.41)

Taking the first exponential term inside the integral, we have

T (γ) =
∫ β2r−2α

0

β2(p−d)−2α

e−
γ
g
+γr2α0 /β2 1

αβ2p2

( g

β2

)−1− 1
α
dg. (C.42)

Substituting γ/g with x, we get

T (γ) =
∫ γ(p−d)2α

β2

γr2α
0

β2

e−x+γr2α0 /β2 1

αβ2p2

( γ

xβ2

)−1− 1
α
( γ

x2

)

dx. (C.43)
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Again substituting x− γr2α0 /β2 by y, we have

T (γ) =
1

αp2

( γ

β2

)− 1
α

∫ γ
(p−d)2α−r2α0

β2

0

e−y
(

y +
γr2α0
β2

)−1+ 1
α
dy (C.44)

≤ 1

αp2

( γ

β2

)− 1
α
(γr2α0

β2

)−1+ 1
α

∫ ((p−d)2α−r2α0 )γ
β2

0

e−ydy (C.45)

=
β2

αγp2
r−2α+2
0

(

1− e
−γ

(p−d)2α−r2α0
β2

)

, (C.46)

where, in (C.45), an upper bound is taken by putting y = 0 in the term
(

y+
γr2α0
β2

)−1+ 1
α

inside the integral. Since T (γ) is positive, (C.46) shows that limγ→∞ T (γ) = 0. Hence,
the claim is true.

Now, after computing the derivative of Fγi,k,n(γ) w.r.t. γ to obtain the probability
density function fγi,k,n(γ), we have

lim
γ→∞

fγi,k,n(γ)e
γr2α0 /β2

=
r20

p2β2r−2α
0

. (C.47)

We do not prove the above equation here as (C.47) is straightforward to verify (similar
to the steps taken to prove (C.37)). From (C.37) and (C.47), we obtain that the
growth function converges to a constant, i.e.,

lim
γ→∞

1− Fγi,k,n(γ)

fγi,k,n(γ)
= β2r−2α

0 . (C.48)

The above equation implies that γi,k,n belongs to a domain of maximal attraction [86,
pp. 296]. In particular, the cdf of (maxk γi,k,n − lK) converges in distribution to a
limiting random variable with an extreme-value cdf, that is given by [87, Definition
8.3.1]

exp(−e−xr2α0 /β2

), x ∈ (−∞,∞). (C.49)

Here, lK is such that Fγi,·,n(lK) = 1− 1/K. Solving for lK , we have

1

K
=

r20
p2
e
− lK

β2r−2α
0 +

∫ β2

r2α
0

β2

(p−d)2α

e−
lK
g

1

αβ2p2

( g

β2

)−1− 1
α
dg

+

∫ β2

(p−d)2α

β2

(p+d)2α

e−
lK
g
(
− s′(g)

)
dg (C.50)
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Substituting lK/g by x in the first integral in RHS of (C.50) and computing an upper
bound, we get

1

K
≤ r20

p2
e
− lK

β2r−2α
0 +

1

αβ2p2

∫ lK

β2r−2α
0

lK
β2(p−d)−2α

e−x
( lK
xβ2

)−1− 1
α
(−lK

x2

)

dx

− e
− lK

β2(p−d)−2α

∫ β2

(p−d)2α

β2

(p+d)2α

s′(g)dg (C.51)

= exp
(

− lK

β2r−2α
0

)r20
p2

+
1

αp2

( lK
β2

)− 1
α

∫ lK
β2(p−d)−2α

lK

β2r−2α
0

e−xx−1+ 1
αdx

+ e
− lK

β2(p−d)−2α

(

− s(g)
)
∣
∣
∣
∣

g= β2

(p−d)2α

g= β2

(p+d)2α

≤ r20
p2
e
− lK

β2r−2α
0 +

1

αp2

( lK
β2

)− 1
α

(
lKr

2α
0

β2

)−1+ 1
α
∫ lK

β2(p−d)−2α

lK

β2r−2α
0

e−xdx

+ e
− lK

β2(p−d)−2α

(

1− (p− d)2

p2

)

(C.52)

≤ e
− lK

β2r−2α
0

r20
p2

+
r2−2α
0

αp2

( lK
β2

)−1
∫ ∞

lK

β2r−2α
0

e−xdx+ e
− lK

β2(p−d)−2α (C.53)

≤ e
− lK

β2r
−2α
0

r20
p2

+
r2−2α
0

αp2

( lK
β2

)−1

e
− lK

β2r
−2α
0 + e

− lK
β2(p−d)−2α (C.54)

≤ e
− lK

β2r−2α
0

r20
p2

(

1 +
β2r−2α

0

αlK
+

p2

r20
e
− lK

β2

(
(p−d)2α−r2α0

))

(C.55)

= e
− lK

β2r−2α
0

r20
p2

(

1 +O

(
1

lK

))

. (C.56)

In (C.51), we substitute lK/g by x in the first integral of (C.50), and compute an
upper bound by taking the exponential term out of the second integral of (C.50). In

(C.52), we note that (p−d)2

p2
≤ s(g) ≤ 1. From the above analysis, we now have

lK ≤ β2r−2α
0 log

Kr20
p2

+O
( 1

lK

)

. (C.57)

Now, to compute a lower bound on lK from (C.50), we note that fact that ds(g)
dg
≤ 0.

Therefore,

1

K
≥ r20

p2
e
− lK

β2r−2α
0 (C.58)

=⇒ lK ≥ β2r−2α
0 log

Kr20
p2

. (C.59)
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From (C.57) and (C.59), we have β2r−2α
0 log

Kr20
p2
≤ lK ≤ β2r−2α

0 log
Kr20
p2

+ O
(

1
logK

)
.

Therefore,

lK ≈ β2r−2α
0 log

Kr20
p2

(C.60)

for large K.

Interestingly, for a given BS i, the scaling of maxk γi,k,n (given by lK in large K

regime) is independent of the coordinates (ai, bi) and is a function of r0, p. Now, since

the growth function converges to a constant (Lemma 13), we apply [67, Theorem A.2]

giving us:

Pr
{

lK − log logK ≤ max
k

γi,k,n ≤ lK + log logK
}

≥ 1− O
( 1

logK

)

, (C.61)

where lK = β2r−2α
0 log

Kr20
p2

. Therefore,

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

≤ Pr
(

max
k

γi,k,n ≤ lK + log logK
)

log(1 + PconlK + Pcon log logK)

+ Pr
(

max
k

γi,k,n > lK + log logK
)

log(1 + Pconβ
2r−2α

0 K) (C.62)

≤ log(1 + PconlK + Pcon log logK) + log(1 + Pconβ
2r−2α

0 K)×O
( 1

logK

)

= log(1 + PconlK) +O(1). (C.63)

where, in (C.62), we have used the fact that the sum-rate is bounded above by

log(1 + Pconβ
2r−2α

0 K). This is because

log
(
1 + Pcon max

k
γi,k,n

)}

≤ log
(

1 + Pcon

∑

k

γi,k,n

)

w.p. 1−−−→ log
(

1 + PconK E{γi,1,n}
)

(C.64)

≤ log
(

1 + Pconβ
2r−2α

0 K E{|νi,1,n|2}
)

≤ log
(

1 + Pconβ
2r−2α

0 K
)

. (C.65)
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Further, from (C.61), we have

E
{

log
(
1 + Pconmax

k
γi,k,n

)}

≥ log(1 + PconlK − Pcon log logK)
(

1− O
( 1

logK

))

. (C.66)

Combining (C.63) and (C.66), we get, for large K,

BN log(1 + PconlK − Pcon log logK)
(

1− O
( 1

logK

))

≤
∑

i,n

E
{

log
(
1 + Pcon max

k
γi,k,n

)}

(C.67)

≤
(
log(1 + PconlK) +O(1)

)
BN.

Therefore, from Lemma 11 and Theorem 1, we get

(
log(1 + PconlK) +O(1)

)
BNfDN

lo (r, B,N)

≤ C∗ ≤
(
log(1 + PconlK) +O(1)

)
BN. (C.68)

This results in:

C∗ = O(BN log logK), and

C∗ = Ω(BNfDN
lo (r, B,N) log logK). (C.69)

Now, to prove Corollary 1, we use the upper bound in Theorem 1 obtained via

Jensen’s inequality. In particular, we have

C∗ ≤ N
∑

i

E

{

log
(

1 +
Pcon

N
max
n,k

γi,k,n

)}

(C.70)

≤ BN log

(

1 +
Pcon

N
lKN

)

+O(1)BN, (C.71)

where (C.71) follows from (C.67), and lKN = β2r−2α
0 log

KNr20
p2

determines the SNR

scaling of the maximum over KN i.i.d. random variables. This implies

C∗ = O

(

BN log
logKN

N

)

. (C.72)
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Note that the above result is only true if Pcon

N
lKN ≫ 1 to make the approximation

log(1 + x) ≈ log x valid for large x.

C.3 Proof of Lemma 9 and Lemma 10

We will first find the SNR scaling laws for each of the three families of distributions

— Nakagami-m, Weibull, and LogNormal. This involves deriving the domain of

attraction of channel-SNR γi,k,n for all three types of distributions. The domains

of attraction are of three types - Fréchet, Weibull, and Gumbel. Let the growth

function be defined as h(γ) ,
1−Fγi,k,n

(γ)

fγi,k,n (γ)
. The random variable, γi,k,n, belongs to the

Gumbel-type if limγ→∞ h′(γ) = 0. It turns out that all three distributions considered,

i.e., Nakagami-m, Weibull, and LogNormal, belong to this category. After showing

this, we find the scaling, lK , such that Fγi,k,n(lK) = 1 − 1/K. The intuition behind

this choice of lK is that the cdf of maxk γi,k,n is FK
γi,k,n

(γ). For γ = lK , we have

FK
γi,k,n

(lK) = (1 − 1/K)K → e−1. The fact that FK
γi,k,n

(γ) converges for a particular

choice of γ gives information about the asymptotic behavior of maxk γi,k,n.

C.3.1 Nakagami-m

In this case, |νi,k,n| is distributed according to Nakagami-(m,w) distribution.

Hence, |νi,k,n|2 is distributed according to Gamma-(m,w/m) distribution. The cumu-

lative distribution function of γi,k,n, i.e., Fγi,k,n(γ) (when γ ≥ 0) is

Fγi,k,n(γ) =

∫

p
(

|νi,k,n|2 ≤
γ

g

)

fGi,k
(g)dg (C.73)

=

∫ γ
(
m, mγ

wg

)

Γ(m)
fGi,k

(g)dg (C.74)

= 1−
∫ β2r−2α

0

β2(p+d)−2α

Γ
(
m, mγ

wg

)

Γ(m)
fGi,k

(g)dg (C.75)
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where fGi,k
(g) is defined in (C.29). Now, for large γ, we can approximate (C.75) as

Fγi,k,n(γ) ≈ 1− 1

Γ(m)

∫ β2r−2α
0

β2(p+d)−2α

(mγ

wg

)m−1

e−
mγ
wg fGi,k

(g)dg (C.76)

= 1− r20
p2Γ(m)

( mγ

wβ2r−2α
0

)m−1

e
− mγ

wβ2r−2α
0

− 1

Γ(m)

∫ β2r−2α
0

β2(p−d)−2α

(mγ

wg

)m−1

e−
mγ
wg

1

αβ2p2
( g

β2

)−1− 1
αdg

+
1

Γ(m)

∫ β2(p−d)−2α

β2(p+d)−2α

(mγ

wg

)m−1

e−
mγ
wg ds(g), (C.77)

where fGi,k
(g) is defined in (C.29). We claim that

lim
γ→∞

(
1− Fγi,k,n(γ)

)
γ1−me

mγ

wβ2r−2α
0

= lim
γ→∞

γ1−me
mγ

wβ2r−2α
0

1

Γ(m)

∫ β2r−2α
0

β2(p+d)−2α

(mγ

wg

)m−1

e−
mγ
wg fGi,k

(g)dg (C.78)

=
r20m

m−1

p2Γ(m)(wβ2r−2α
0 )m−1

. (C.79)

Note that the first two terms in the RHS of (C.77) contribute everything towards the

limit in (C.79). We will show that the rest of the terms contribute zero to the limit

in RHS of (C.79). In particular, ignoring the constant Γ(m), the contribution of the

two integral-terms (in (C.77)) is

γ1−me
mγ

wβ2r−2α
0

(

−
∫ β2r−2α

0

β2(p−d)−2α

(mγ

wg

)m−1

e−
mγ
wg

1

αβ2p2

( g

β2

)−1− 1
α
dg

+

∫ β2(p−d)−2α

β2(p+d)−2α

(mγ

wg

)m−1

e−
mγ
wg ds(g)

)

= −
∫ β2r−2α

0

β2(p−d)−2α

( m

wg

)m−1

e
−mγ

w

(
1
g
− 1

β2r−2α
0

)

1

αβ2p2

( g

β2

)−1− 1
α
dg

︸ ︷︷ ︸

T1(γ)

+

∫ β2(p−d)−2α

β2(p+d)−2α

( m

wg

)m−1

e
−mγ

w

(
1
g
− 1

β2r−2α
0

)

ds(g)

︸ ︷︷ ︸

T2(γ)

= T1(γ) + T2(γ). (C.80)
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Now,

|T1(γ)|

=
(m

w

)m−1 β
2
α

αp2

∫ β2

r2α0

β2

(p−d)2α

g−m− 1
α e

−mγ
w

(
1
g
− 1

β2r−2α
0

)

dg (C.81)

=
(m

w

)m−1 β
2
α

αp2

∫ β−2(p−d)2α

β−2r2α0

xm+ 1
α
−2e−

mγ
w

(
x−β−2r2α0

)

dx (C.82)

≤
(m

w

)m−1 β
2
α

αp2
max

{(
(p− d)2α

β2

)m+ 1
α
−2

,

(
r2α0
β2

)m+ 1
α
−2
}

×
∫ β−2(p−d)2α

β−2r2α0

e−
mγ
w

(
x−β−2r2α0

)

dx

=
(m

w

)m−1 β
2
α

αp2
max

{(
(p− d)2α

β2

)m+ 1
α
−2

,

(
r2α0
β2

)m+ 1
α
−2
}

× 1− e−
mγ
w

(
β−2(p−d)2α−β−2r2α0

)

mγ
w

(C.83)

→ 0, as γ →∞. (C.84)

where, in (C.82), we substituted 1
g
by x. Further,

|T2(γ)| =

∣
∣
∣
∣

∫ β2(p−d)−2α

β2(p+d)−2α

( m

wg

)m−1

e
−mγ

w

(
1
g
− 1

β2r−2α
0

)

ds(g)

∣
∣
∣
∣

(C.85)

≤ e
− mγ

wβ2 ((p−d)2α−r2α0 )
∣
∣
∣
∣

∫ β2(p−d)−2α

β2(p+d)−2α

( m

wg

)m−1

ds(g)

∣
∣
∣
∣

(C.86)

→ 0, as γ →∞. (C.87)

Therefore, T1(γ) and T2(γ) have zero contribution to the RHS in (C.79), and the our

claim is true. Now, from (C.77), we have

fγi,k,n(γ) =
γm−1

Γ(m)

∫ β2r−2α
0

β2(p+d)−2α

( m

wg

)m

e−
mγ
wg fGi,k

(g)dg

− (m− 1)γm−2

Γ(m)

∫ β2r−2α
0

β2(p+d)−2α

( m

wg

)m−1

e−
mγ
wg fGi,k

(g)dg

Using (C.78)-(C.79), it is easy to verify that

lim
γ→∞

fγi,k,n(γ)γ
1−me

mγ

wβ2r−2α
0 =

r20m
m

p2Γ(m)(wβ2r−2α
0 )m

. (C.88)
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From (C.79) and (C.88), we obtain that the growth function converges to a constant.

In particular,

lim
γ→∞

1− Fγi,k,n(γ)

fγi,k,n(γ)
=

wβ2r−2α
0

m
, (C.89)

Hence, γi,k,n belongs to the Gumbel-type [87, Definition 8.3.1] and maxk γi,k,n − lK

converges in distribution to a limiting random variable with a Gumbel-type cdf, that

is given by

exp(−e−xr2α0 /β2

), x ∈ (−∞,∞), (C.90)

where 1 − Fγi,k,n(lK) =
1
K
. From (C.79), we have lK ≈ wβ2r−2α

0

m
log

Kr20m
m−1

p2Γ(m)(wβ2r−2α
0 )m−1

for large K.

Now, since the growth function converges to a constant and lK = Θ(logK), we

can use [67, Theorem 1] to obtain:

Pr
{

lK − log logK ≤ max
k

γi,k,n ≤ lK + log logK
}

≥ 1−O
( 1

logK

)

. (C.91)

This is the same as (C.61). Thus, following the same analysis as in (C.62)-(C.72), we

get

C∗ = O

(

BN log log
Kr20
p2

)

and (C.92)

C∗ = BNfDN
lo (r, B,N)Ω

(

log log
Kr20
p2

)

. (C.93)

Further, if log KN
N
≫ 1, then C∗ = O

(

BN log
log

KNr20
p2

N

)

.
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C.3.2 Weibull

In this case, |νi,k,n| is distributed according to Weibull-(λ, t) distribution. Hence,

|νi,k,n|2 is distributed according to Weibull-(λ2, t/2) distribution. We start with find-

ing the cumulative distribution function of γi,k,n, i.e., Fγi,k,n(γ) (when γ ≥ 0) as

Fγi,k,n(γ)

=

∫

p
(

|νi,k,n|2 ≤
γ

g

)

fGi,k
(g)dg (C.94)

= 1−
∫ β2r−2α

0

β2(p+d)−2α

e
−
(

γ

gλ2

)t/2

fGi,k
(g)dg (C.95)

= 1− r20
p2
e
−
(

γ

β2r−2α
0 λ2

)t/2

−
∫ β2

r2α0

β2

(p−d)2α

e
−
(

γ

gλ2

)t/2

αβ2p2

( g

β2

)−1− 1
α
dg

+

∫ β2

(p−d)2α

β2

(p+d)2α

e
−
(

γ

gλ2

)t/2

ds(g). (C.96)

This case is similar to the Rayleigh distribution scenario in (C.33). Therefore, it is

easy to verify that

lim
γ→∞

(
1− Fγi,k,n(γ)

)
e

(
γ

β2r−2α
0

λ2

)t/2

=
r20
p2
, and (C.97)

lim
γ→∞

fγi,k,n(γ)γ
1−t/2e

(
γ

β2r−2α
0

λ2

)t/2

=
tr20

2
(
β2r−2α

0 λ2
)t/2

p2
. (C.98)

Thus, the growth function h(γ) =
1−Fγi,k,n

(γ)

fγi,k,n (γ)
can be approximated for large γ as

h(γ) ≈ 2
(
β2r−2α

0 λ2
)t/2

t
γ1−t/2. (C.99)

Since limγ→∞ h′(γ) = 0, the limiting distribution of maxk γi,k,n is of Gumbel-type.

Note that this is true even when t < 1 which refers to heavy-tail distributions. Solving

for 1− Fγi,k,n(lK) =
1
K
, we get

lK = β2r−2α
0 λ2 log

2
t
Kr20
p2

. (C.100)
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Now, we apply the following theorem by Uzgoren.

Theorem 6 (Uzgoren). Let x1, . . . , xK be a sequence of i.i.d. positive random vari-
ables with continuous and strictly positive pdf fX(x) for x > 0 and cdf represented by
FX(x). Let hX(x) be the growth function. Then, if limx→∞ h′

X(x) = 0, we have

log
{
− logFK

(
lK + hX(lK) u

)}

= −u+
u2

2!
h′
X(lK) +

u3

3!

(
hX(lK)h

′′
X(lK)− 2h′2

X(lK)
)
+O

(
e−u+O(u2h′

X(lK ))

K

)

.

Proof. See [88, Equation 19] for proof.

The above theorem gives taylor series expansion of the limiting distribution for

Gumbel-type distributions. In particular, setting lK = β2r−2α
0 λ2 log

2
t

Kr20
p2

and u =

log logK, we have h(lK) = O
(

1

log−
2
t +1 K

)

, h′(lK) = O
(

1
logK

)

, h′′(lK) = O
(

1

log
2
t +1 K

)

,

and so on. In particular, we have

Pr
(

max
k

γi,k,n ≤ lK + h(lK) log logK
)

= e−e
− log logK+O

(
log2 logK

logK

)

(C.101)

= 1− O
( 1

logK

)

, (C.102)

where we have used the fact that ex = 1 +O(x) for small x. Similarly,

Pr
(

max
k

γi,k,n ≤ lK − h(lK) log logK
)

= e−e
log logK+O

(
log2 logK

logK

)

(C.103)

= e−
(
1+O
(

log logK
logK

))
logK (C.104)

= O
( 1

K

)

. (C.105)

Subtracting (C.105) from (C.102), we get

Pr

(

1− O

(
log logK

logK

)

<
maxk γi,k,n

lK
≤ 1 +O

(
log logK

logK

))

≥ 1− O
( 1

logK

)

.(C.106)

Note that the above equation is the same as (C.61). Therefore, following (C.62)-

(C.72), we get

C∗ = BN O
(

log log2/t
Kr20
p2

)

, and (C.107)

C∗ = BNfDN
lo (r, B,N) Ω

(

log log2/t
Kr20
p2

)

. (C.108)
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Further, if log2/t KN
N

≫ 1, then C∗ = O

(

BN log
log2/t

KNr20
p2

N

)

.

C.3.3 LogNormal

In this case, |νi,k,n| is distributed according to LogNormal-(a, w) distribution.

Hence, |νi,k,n|2 is distributed according to LogNormal-(2a, 4w) distribution. The cu-

mulative distribution function of γi,k,n, i.e., Fγi,k,n(γ) (when γ ≥ 0) is

Fγi,k,n(γ) =

∫

p
(

|νi,k,n|2 ≤
γ

g

)

fGi,k
(g)dg (C.109)

= 1− 1

2

∫ β2r−2α
0

β2(p+d)−2α

erfc

[
log γ

g
− 2a

√
8w

]

fGi,k
(g)dg, (C.110)

where erfc[·] is the complementary error function. Using the asymptotic expansion of

erfc[·], Fγi,k,n(γ) can be approximated [89, Eq. 7.1.23] in the large γ-regime as:

Fγi,k,n(γ) (C.111)

≈ 1− 1

2

∫ β2r−2α
0

β2(p+d)−2α

fGi,k
(g)

e
−
(

log
γ
g −2a

√
8w

)2

(
log γ

g
−2a

√
8w

)√
π

∞∑

m=0

(−1)m (2m− 1)!!

2m
(

log γ
g
−2a

√
8w

)2mdg,

where (2m− 1)!! = 1× 3 × 5× . . .× (2m− 1). We ignore the terms m = 1, 2, . . . as

the dominant term for large γ corresponds to m = 0. Therefore, we have

Fγi,k,n(γ)

= 1−
√

2w

π

∫ β2r−2α
0

β2(p+d)−2α

e
−
(

log
γ
g −2a

√
8w

)2

log γ
g
− 2a

fGi,k
(g)dg (C.112)

= 1−
√

2w

π

r20
p2

e
−
( log

γ

β2r−2α
0

−2a

√
8w

)2

log γ

β2r−2α
0

− 2a
−
√

2w

π

∫ β2

r2α
0

β2

(p−d)2α

1

αβ2p2

( g

β2

)−1− 1
α e

−
(

log
γ
g −2a

√
8w

)2

log γ
g
− 2a

dg

+

√

2w

π

∫ β2

(p−d)2α

β2

(p+d)2α

e
−
(

log
γ
g −2a

√
8w

)2

log γ
g
− 2a

ds(g). (C.113)
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Now, we claim that

lim
γ→∞

(
1− Fγi,k,n(γ)

)(
log γ − log(β2r−2α

0 )− 2a
)
e

( log
γ

β2r−2α
0

−2a

√
8w

)2

=
r20
p2

√

2w

π
.(C.114)

This is because the contribution of the two integrals in (C.113) towards the RHS of

(C.114) is zero. The contribution of first integral, when γ is large, is

∣
∣
∣
∣
∣

(

log
γ

β2r−2α
0

− 2a
)

e

( log
γ

β2r−2α
0

−2a

√
8w

)2
∫ β2

r2α0

β2

(p−d)2α

1

αβ2p2

( g

β2

)−1− 1
α e

−
(

log
γ
g −2a

√
8w

)2

log γ
g
− 2a

dg

∣
∣
∣
∣
∣

≤
(

log
γ

β2r−2α
0

− 2a
)r−2α−2

0

αβ2p2

∫ β2

r2α0

β2

(p−d)2α

e

( log
γ

β2r−2α
0

−2a

√
8w

)2

−
(

log
γ
g −2a

√
8w

)2

log γ
g
− 2a

dg (C.115)

≤ r−2α−2
0

αβ2p2

∫ β2

r2α
0

β2

(p−d)2α

e

( log
γ

β2r−2α
0

−2a

√
8w

)2

−
(

log
γ
g −2a

√
8w

)2

dg (C.116)

≤ r−2α−2
0

αβ2p2

∫ β2

r2α
0

β2

(p−d)2α

e
1
8w

(
log γ2

gβ2r−2α
0

−4a
)
log g

β2r−2α
0 dg (C.117)

=
r−2α−2
0

αβ2p2

∫ β2

r2α
0

β2

(p−d)2α

( g

β2r−2α
0

) 1
8w

(
log γ2

gβ2r−2α
0

−4a
)

dg (C.118)

≤ r−2α−2
0

αβ2p2

∫ β2

r2α
0

β2

(p−d)2α

( g

β2r−2α
0

) 1
8w

(
log γ2

β4r−4α
0

−4a
)

dg (C.119)

=
r−2α−2
0

αβ2p2
1

1
8w

(
log γ2

β4r−4α
0

− 4a
)

(

1−
( r0
p− d

) 2α
8w

(
log γ2

β4r−4α
0

−4a
)
−2α
)

(C.120)

→ 0, as γ →∞. (C.121)

where in (C.115), we take an upper bound by taking the term
(

g
β2

)−1−1/α
out of

the integral, and in (C.119), we put g = β2r−2α
0 in the exponent of

(
g

β2r−2α
0

)

since

g ≤ β2r−2α
0 . The second integral has an exponent term that goes to zero faster than

e
−
( log

γ

β2r−2α
0

−2a

√
8w

)2

→ 0, making its contribution zero. Note that only the first two

term in (C.113) contribute to the RHS in (C.114). Similar to the above analysis, it
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is easy to show that

lim
γ→∞

fγi,k,n(γ) γe

( log
γ

β2r−2α
0

−2a

√
8w

)2

=
r20

p2
√
8wπ

. (C.122)

Using the above equation and (C.114), we have

h(γ) =
1− Fγi,k,n(γ)

fγi,k,n(γ)
≈ 4wγ

log γ
for large γ, and (C.123)

lim
γ→∞

h′(γ) = 0. (C.124)

Therefore, the limiting distribution of maxk γi,k,n belongs to the Gumbel-type. Solving

for lK , we have

lK = β2r−2α
0 e

√

8w log
Kr2

0
p2

+Θ(log logK)
, and (C.125)

h(lK) = O
(

lK
log lK

)

, h′(lK) = O
(

1
log lK

)

, h′′(lK) = O
(

1
lK log lK

)

, and so on. Using

Theorem 6 for u = log logK, we have

Pr
(

max
k

γi,k,n ≤ lK + h(lK) log logK
)

= e−e
− log logK+O

(
log2 logK√

logK

)

(C.126)

= 1− O
( 1

logK

)

, (C.127)

where we have used the fact that ex = 1 +O(x) for small x. Similarly,

Pr
(

max
k

γi,k,n ≤ lK − h(lK) log logK
)

= e−e
log logK+O

(
log2 logK√

logK

)

(C.128)

= e
−
(
1+O
(

log logK√
logK

))
logK

(C.129)

= O
( 1

K

)

. (C.130)

Combining (C.127) and (C.130), we get

Pr

(

lK − c
e
√
8w logK

logK
log logK < maxk γi,k,n ≤ lK + c

e
√
8w logK

logK
log logK

)

≥ 1−O

(
1

logK

)

, (C.131)

175



where c is a constant. Now, following a similar analysis as in (C.62)-(C.72), we get

max
k

γi,k,n = Θ
(
lK
)
w.h.p., (C.132)

C∗ = O

(

BN

√

log
Kr20
p2

)

, and (C.133)

C∗ = Ω

(

BNfDN
lo (r, B,N)

√

log
Kr20
p2

)

. (C.134)

Further, if e
√

logKN

N
≫ 1, then C∗ = O



BN log e

√

log
KNr2

0
p2

N



.

C.4 Proof of Theorem 4

We have FX(lT/S1
) = 1 − S1

T
, where S1 ∈ (0, T ]. Therefore, Fmaxt Xt(lT/S1

) =

(
1− S1

T

)T
. This gives, for any increasing concave function V (·),

E
{

V
(
max

t
Xt

)}

≥ Pr
(

max
t

Xt ≥ lT/S1

)

V
(
lT/S1

)

=

(

1−
(

1− S1

T

)T
)

V
(
lT/S1

)
(C.135)

≥
(
1− e−S1

)
V
(
lT/S1

)
. (C.136)

Setting S1 = logK and V (x) = log(1 + Pconx), we get

(

1− 1

K

)

log
(
1 + PconlK/ logK

)
≤ E

{

log
(
1 + Pcon max

k
γi,k,n

)}

, (C.137)

where

Fγi,k,n(lK/ logK) = 1− logK

K
. (C.138)
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C.5 Proof of Theorem 5

The maximum distance between a TX and user is 2p. Therefore, we have

C∗LB

≤ max
P∈P

B∑

i=1

N∑

n=1

E

{

max
k

log

(

1 +
Pi,n γi,k,n

1 + β2(2p)−2α
∑

j 6=i Pj,n |νj,k,n|2
)}

≤ max
P∈P

B∑

i=1

N∑

n=1

E

{

log

(

1 + max
k

Pi,n β
2R−2α

i,k |νi,k,n|2
1 + β2(2p)−2α

∑

j 6=i Pj,n |νj,k,n|2
)}

.(C.139)

Similarly, as a lower bound, we have (due to truncated path-loss model)

C∗LB

≥ max
P∈P

B∑

i=1

N∑

n=1

E

{

max
k

log

(

1 +
Pi,n γi,k,n

1 + β2r−2α
0

∑

j 6=i Pj,n |νj,k,n|2
)}

≥ max
P∈P

B∑

i=1

N∑

n=1

E

{

log

(

1 + max
k

Pi,n β
2R−2α

i,k |νi,k,n|2
1 + β2r−2α

0

∑

j 6=i Pj,n |νj,k,n|2
)}

. (C.140)

Note that the only difference in the bounds in (C.139) and (C.140) is the multipli-

cation factor in the denominator of SINR term. In particular, the bounds can be

represented as:

max
P∈P

B∑

i=1

N∑

n=1

E

{

log

(

1 + max
k

Pi,n β
2R−2α

i,k |νi,k,n|2
1 + β2c−2α

∑

j 6=i Pj,n |νj,k,n|2
)}

, (C.141)

where r0 ≤ c ≤ 2p is a constant. Defining Xi,n(c) , maxk Xi,k,n(c), where

Xi,k,n(c) ,
β2R−2α

i,k |νi,k,n|2
1 + β2c−2α

∑

j 6=i Pj,n |νj,k,n|2
, (C.142)

the bounds can be represented as

max
P∈P

B∑

i=1

N∑

n=1

E
{

log
(
1 + Pi,nXi,n(c)

)}

. (C.143)
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Let us denote Y(c) , β2c−2α
∑

j 6=i Pj,n |νj,k,n|2. Then, we have

FXi,k,n(c)|Ri,k=ri,k(x) =

∫ ∞

y=0

Pr

(

|νi,k,n|2 ≤
x(1 + y)

β2r−2α
i,k

∣
∣
∣
∣
Ri,k=ri,k

)

fY(c)(y)dy

=

∫ ∞

y=0

(

1− e
− x(1+y)

β2r−2α
i,k

)

fY(c)(y)dy

= 1−
∫ ∞

y=0

e
− x(1+y)

β2r−2α
i,k fY(c)(y)dy,

where FW (x) denotes the value that is taken by the cdf of random variable W at x.

Now, Y(c) has a MGF

MY(c)(t) =
∏

j 6=i

1

1− β2c−2αPj,nt
. (C.144)

Therefore, we have

F
Xi,k,n(c)|Gi,k=β2r−2α

i,k
(x) = 1− e

− x

β2r−2α
i,k

∏

j 6=i

1

1 + β2c−2αPj,n
x

β2r−2α
i,k

= 1− e
− x

gi,k

∏

j 6=i

1

1 +
β2c−2αPj,nx

gi,k

, (C.145)

where Gi,k = β2R−2α
i,k . This gives

FXi,k,n
(x) =

∫

FXi,k,n(c)|Gi,k=g(x)fGi,k
(g)dg (C.146)

(C.147)

= 1− r20
p2
e−

x
g

∏

j 6=i

1

1 +
β2c−2αPj,nx

g

∣
∣
∣
∣
∣
g=β2r−2α

0

(C.148)

−
∫ β2r−2α

0

β2(p−d)−2α

e−
x
g

(
∏

j 6=i

1

1 +
β2c−2αPj,nx

g

)

1

αβ2p2

( g

β2

)−1−1/α

dg

+

∫ β2(p−d)−2α

β2(p+d)−2α

e−
x
g

(
∏

j 6=i

1

1 +
β2c−2αPj,nx

g

)

ds(g). (C.149)
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At large values of x, the last two terms in the above expression are negligible compared

to the second term19. Therefore, at large x, one can approximate

1− FXi,k,n(c)(x) ≈
r20
p2
e
− x

β2r−2α
0

∏

j 6=i

1

1 +
Pj,nx

c2αr−2α
0

and (C.150)

fXi,k,n(c)(x) ≈
r20

p2β2r−2α
0

e
− x

β2r−2α
0

∏

j 6=i

1

1 +
Pj,nx

c2αr−2α
0

. (C.151)

Note that Xi,k,n(c) belongs to a domain of attraction since limx→∞
1−FXi,k,n(c)(x)

fXi,k,n(c)(x)
=

β2r−2α
0 . In particular, the distribution of Xi,n(c) = maxk Xi,k,n(c) can be approximated

by a Gumbel distribution when K is large. In particular, maxk Xi,k,n(c)− lK(c, i, n)

converges in distribution to Gumbel-type cdf that is given by

exp{−e−xr2α0 /β2}, x ∈ (−∞,∞). (C.152)

Here, lK(c, i, n) satisfies FXi,1,n(c)

(
lK(c, i, n)

)
= 1− 1

K
.

We will now bound C∗LB via the upper and lower bounds represented by the common

expression in (C.143). First, we consider the upper bound. From (C.139) and (C.143),

we have

C∗LB ≤ max
P∈P

B∑

i=1

N∑

n=1

E
{

log
(
1 + Pi,nXi,n(2p)

)}

(C.153)

≤ max
P∈P

B∑

i=1

N∑

n=1

log
(
1 + Pi,n E

{
Xi,n(2p)

})
, (C.154)

where the above equation follows by Jensen’s inequality. Now, we know

max
k

Xi,k,n(c)− lK(c, i, n)
d−→ Q (C.155)

as K tends to infinity, where
d−→ denotes convergence in distribution, and Q has a

gumbel-cdf given by (C.152). Note that maxk={1,...,K}Xi,k,n(c) is a non-decreasing

19Following the analysis in (C.41)-(C.46), the last but one term in (C.149) can be ignored. It
is straightforward to show that the last term can be ignored at large x since the exponential term
decays quickly to zero.
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sequence for every realization. Hence, applying monotone convergence theorem, we

have L1 convergence. In particular,

E
{
max

k
Xi,k,n(c)} ր E{Q}+ lK(c, i, n), (C.156)

as K grows large, whereր denotes convergence of an increasing sequence. Therefore,

E
{
Xi,n(2p)

}
≤ lK(2p, i, n) + E{Q}. Noticing that E{Q} = β2r−2α

0 u, where u is the

Euler-Mascheroni constant (u ≈ 0.5772). Applying the above argument to (C.154),

we have

C∗LB ≤ max
P∈P

B∑

i=1

N∑

n=1

log
(
1 + Pi,n

(
lK(2p, i, n) + β2r−2α

0 u
))

(C.157)

= max
P∈P

B∑

i=1

N∑

n=1

log

(

1 +

(

1 +
β2r−2α

0 u

lK(2p, i, n)

)

Pi,nlK(2p, i, n)

)

(C.158)

≤ max
P∈P

B∑

i=1

N∑

n=1

(

1 +
β2r−2α

0 u

lK(2p, i, n)

)

log
(
1 + Pi,nlK(2p, i, n)

)
, (C.159)

where (C.159) follows from (C.158) because log(1 + ax) ≤ a log(1 + x) for all x ≥ 0

and a ≥ 1. Now, from (C.150), we know that l = lK(2p, i, n) satisfies

r20K

p2
= e

l

β2r−2α
0

∏

j 6=i

(

1 +
Pj,nl

(2p)2αr−2α
0

)

. (C.160)

Note that the value of l that satisfies the above equation decreases with increase in

{Pj,n for all j 6= i}. Therefore, we can write lK(2p, i, n) ≥ l̄(2p,K) for all (i, n),

where l = l̄(2p,K) is computed by solving (C.160) with Pj,n = Pcon for all (j, n). In

particular, l̄(2p,K) satisfies

r20K

p2
= e

l̄(2p,K)

β2r−2α
0

(

1 +
l̄(2p,K)Pcon

(2p)2αr−2α
0

)B−1

. (C.161)

Using lK(2p, i, n) ≥ l̄(2p,K) in (C.159), we get

C∗LB ≤
(

1 +
β2r−2α

0 u

l̄(2p,K)

)

max
P∈P

B∑

i=1

N∑

n=1

log
(
1 + Pi,nlK(i, n)

)
, (C.162)

180



where l = lK(2p, i, n) satisfies (C.160).

We will now consider the lower bound in (C.143). The lower bound follows from

Theorem 4. In particular, Using V (Xi,n(c)) = log(1 + Pi,nXi,n(c)) in Theorem 4 and

taking the summation over all (i, n), the optimization problem with an objective func-

tion
∑

i,n E
{
V (Xi,n)

}
evaluates the lower bounds in (C.143) when c = r0. Therefore,

we have from Theorem 4,

C∗LB ≥ (1− e−S1) max
P∈P

B∑

i=1

N∑

n=1

log
(
1 + Pi,n lK/S1(r0, i, n)

)
, (C.163)

where S1 ∈ (0, K] and FXi,1,n(r0)

(
lK/S1(r0, i, n)

)
= 1− S1

K
. Putting S1 = 1, we have

C∗LB ≥ 0.63 max
P∈P

B∑

i=1

N∑

n=1

log
(
1 + Pi,nlK(r0, i, n)

)
, (C.164)

Combining (C.162) and (C.164) in to one mathematical form, define the class of

optimization problems as follows.

OP
(
c, h(K)

)

, max
P∈P

B∑

i=1

N∑

n=1

log(1 + Pi,nxi,n) (C.165)

s.t. Pi,n ≥ 0 ∀ i, n, (C.166)

∑

n

Pi,n ≤ Pcon ∀ i, and (C.167)

r20 h(K)

p2
= e

xi,n

β2r−2α
0

∏

j 6=i

(

1 +
c−2αPj,nxi,n

r−2α
0

)

∀ i, n. (C.168)

Then, we have

(1− e−S1)OP
(
r0, K/S1

)
≤ C∗LB ≤

(

1 +
β2r−2α

0 u

l̄(2p,K)

)

OP
(
2p,K

)
, (C.169)

where S1 ∈ (0, K], u is the Euler-Mascheroni constant and l̄(K) satisfies (C.161)

(re-written below for brevity):

r20K

p2
= e

l̄(2p,K)

β2r−2α
0

(

1 +
l̄(2p,K)Pcon

(2p)2αr−2α
0

)B−1

. (C.170)
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C.5.1 Proof of a Property of OP
(
c, h(K)

)

We will now show that for positive constants c1, c2 (0 < c1 ≤ c2) and any increasing

function h(·), we have

1 ≤ OP
(
c2, h(K)

)

OP
(
c1, h(K)

) ≤
(
c2
c1

)2α

. (C.171)

For any given set of powers {Pi,n for all i, n}, let {xi,n(c1) for all i, n} be the

solution to (C.168) (rewritten below for brevity) when considering the optimization

problem OP
(
c1, h(K)

)
.

r20 h(K)

p2
= e

xi,n

β2r−2α
0

∏

j 6=i

(

1 +
c−2αPj,nxi,n

r−2α
0

)

∀ i, n. (C.172)

Similarly, for the same set of powers {Pi,n for all i, n}, let {xi,n(c2) for all i, n} be

the solution to (C.172) when considering the optimization problem OP
(
c2, h(K)

)
.

Clearly, xi,n(c2) ≥ xi,n(c1) since the RHS of (C.172) is a decreasing function of c.

Now, we claim that

(
c2
c1

)2α

xi,n(c1) ≥ xi,n(c2) (C.173)

for all (i, n). We know that for all (i, n)

r20 h(K)

p2
= e

xi,n(c2)

β2r−2α
0

∏

j 6=i

(

1 +
c−2α
2 Pj,nxi,n(c2)

r−2α
0

)

(C.174)

Now, if we substitute xi,n(c2) by any larger value, then the RHS of (C.174) will be

larger than LHS of (C.174). This is because the RHS of (C.172) is an increasing

function of xi,n. Let us substitute
(
c2
c1

)2α
xi,n(c1) instead of xi,n(c2). Then, we get

r20 h(K)

p2
≷ e

c2α2 xi,n(c1)

c2α1 β2r−2α
0

∏

j 6=i

(

1 +
c−2α
1 Pj,nxi,n(c1)

r−2α
0

)

, (C.175)
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where the actual inequality will be determined later. Since {xi,n(c1) for all i, n} is

the solution to (C.172) when considering the optimization problem OP
(
c1, h(K)

)
, we

also have

r20 h(K)

p2
= e

xi,n(c1)

β2r−2α
0

∏

j 6=i

(

1 +
c−2α
1 Pj,nxi,n(c1)

r−2α
0

)

(C.176)

Dividing (C.175) by (C.176) and taking logarithm of both sides, we get

0 ≷

(
c2α2
c2α1
− 1

)
xi,n(c1)

β2r−2α
0

, (C.177)

Since c2 ≥ c1, we have in (C.175)

r20 h(K)

p2
≤ e

c2α2 xi,n(c1)

c2α
1

β2r−2α
0

∏

j 6=i

(

1 +
c−2α
1 Pj,nxi,n(c1)

r−2α
0

)

, (C.178)

Therefore,
(
c2
c1

)2α
xi,n(c1) ≥ xi,n(c2) for all (i, n). Using this relation and the fact that

xi,n(c2) ≥ xi,n(c1), we have

log(1 + Pi,nxi,n(c1)) ≤ log(1 + Pi,nxi,n(c2)) ≤ log
(

1 +
(c2
c1

)2α

Pi,nxi,n(c1)
)

.(C.179)

Also note that log(1 + ax) ≤ a log(1 + x) for all x ≥ 0 and a ≥ 1. Therefore, we have

log
(

1 +
(c2
c1

)2α

Pi,nxi,n(c1)
)

≤
(c2
c1

)2α

log
(
1 + Pi,nxi,n(c1)

)
. (C.180)

Combining (C.179) and (C.180), we have for every (i, n)

1 ≤ log(1 + Pi,nxi,n(c2))

log(1 + Pi,nxi,n(c1))
≤
(c2
c1

)2α

. (C.181)

Putting the above equation in OP
(
c, h(K)

)
(see (C.165)-(C.168)), we have

1 ≤ OP
(
c2, h(K)

)

OP
(
c1, h(K)

) ≤
(c2
c1

)2α

. (C.182)
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