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A Separation Principle for a Class of Non-UCO
Systems
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Abstract—This paper introduces a new approach to output The work in [1] unifies these approaches to prove a separation
feedback stabilization of single-input-single-output systems principle for a rather general class of nonlinear systems. The re-
which, unlike other techniques found in the literature, does not - .ent\york in [16] relaxes the uniformity requirement of the UCO
use quasilinear high-gain observers and control input saturation . . . .
to achieve separation between the state feedback and observer de-ass_’urnptlon by ass_umlng the existence of one control input for
signs. Rather, we show that by using nonlinear high-gain observers Which the system is observable. On the other hand, however,
working in state coordinates, together with a dynamic projection [16] requires the observability property to be complete, i.e., to
algorithm, the same kind of separation principle is achieved hold on the entire state space. Another feature of that work is the
for a larger class of systems which are nouniformly completely |5y ation of the smooth stabilizability assumption, replaced by

observableBy working in state coordinates, this approach avoids th fi f toli trollabilit hich all f
using knowledge of the inverse of the observability mapping to € notion of asymptotic controllability (which allows for pos-

estimate the state of the plant, which is otherwise needed when Sibly nonsmooth stabilizers).
using high-gain observers to estimate the output time derivatives. A common feature of the papers previously mentioned is their
Index Terms—Nonlinear control, nonlinear observer, output input-output variable approactwhich entails using the vector
feedback, separation principle. col (y, 4, ..., y), w, @, ..., u(™)) as feedback, for some
integersn,, n,, wherey and« denote the system output and
input, respectively. This in particular implies that, when dealing
with systems which are not input-output feedback linearizable,
. INTRODUCTION such approach requires the explicit knowledge of the inverse

HE area of nonlinear output feedback control has receiveéithe observability mapping, which in some cases may not be

much attention after the publication of the work [3], iravailable.
which the authors developed a systematic strategy for the outpuThis paper develops a different methodology for output feed-
feedback control of input-output linearizable systems with fulack stabilization which is based orstate-variable approach
relative degree, which employed two basic tools: an high-gaamd achieves a separation principle for a class of non-UCO sys-
observer to estimate the derivatives of the outputs (and henems, specifically systems that are observable on an open region
the system states in transformed coordinates), and control inpfithe state space and input space, rather than everywhere. We
saturation to isolate the peaking phenomenon of the obserirapose a restriction on the topology of such an “observability
from the system states. Essentially the same approach has letgion” assuming, among other things, that it contains a suffi-
been applied in a number of papers by various researchers (semtly large simply connected neighborhood of the origin. The
e.g., [9], [12], [7], [13], and [1]) to solve different problems inmain contributions are the development of a nonlinear observer
output feedback control. In most of the papers found in the litvorking in state coordinates (which is proved to be equivalent
erature, (see, e.g., [3], [9], [12], [13], [7], and [14]) the author® the standard high-gain observer in output coordinates), and a
consider input-output feedback linearizable systems with eittidyynamic projection operating on the observer dynamics which
full relative degree or minimum phase zero dynamics. The woeliminateshe peaking phenomenon in the observer states, thus
in [21] showed that for nonminimum phase systems the probleavioiding the need to use control input saturation. One of the ben-
can be solved by extending the system dynamics with a chafits of astate-variable approacks that the knowledge of the
of integrators at the input side. However, the results containederse of the observability mapping is not needed.
there are local. In [19], by putting together this idea with the ap- It is proved that, provided the observable region satisfies suit-
proach found in [3], the authors were able to show how to soleble topological properties, the proposed methodology yields
the output feedback stabilization problem for smoothly stabitosed-loop stability. In the particular case when the plant is
lizable and uniformly completely observable (UCO) systemglobally stabilizable and UCO, this approach yields semiglobal

stability, as in [19], provided a convexity requirement is satis-
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Il. PROBLEM FORMULATION AND ASSUMPTIONS where f.(X) = col(f(x, z1), 22, .-+ 2n,, 0), g =
col (0, ..., 1), andh.(X) = h(z, z1). Now, we are ready to
state our first assumption.
Assumption Al (Observability)System (1) is observable
&= f(z, u) over an open sed C R™ x R™» containing the origin, i.e., the
mappingF: O — ) [where) = F(0)] defined by
y =h(z, u) 1)

Consider the following dynamical system:

wherez € R", u, y € R, f andh are known smooth functions,
and f(0, 0) = 0. Our control objective is to construct a sta-
bilizing controller for (1) without the availability of the system
statese. In order to do so, we need an observability assumption. ) .
Define the observability mapping has a smooth inverse™": Y — O

= F(X) = [H(‘”’ Z)] (4)

—1
y FAW) =) = [T )
Ye = { =H (:1:7 U, ..., u("“_l))
y(m=1 Remark 1: In the existing literature, an assumption similar
to Al can be found in [21] and [19]. It is worth stressing, how-
h(z, “)(1) ever, that in both works the authors assume the(s¢b be
_ 1z, u, u') R" x R™. When that is the case, the system is said to be [20],
B : [19] UCO. In many practical applications, the system under con-
On_1 (;L-_/ u, ..., u(m—l)) sideration may not be UCO, but rather be observable in some
subset ofR™ x R™= only, thus preventing the use of most of
(y(™=Y is then — 1th derivative) where the output feedback techniques found in the literature, including
the ones found in [21], [19], and [1]. On the other hand in
oh oh Al the mappingH, viewed as a mapping acting anparam-
e1(z, u, u<1)) = o f(z, )+ Ju ulV) eterized byz, is assumed to be square (i.e., it maps spaces of

equal dimension), thus implying that can be expressed as
oo (z, u, uM, u?®) = 91 f(z, u) + 91 u® ‘8"01 «(?  a function ofy, its n — 1 time derivatives and, i.e.,z =
O ou oult) H(col(y, 4, ..., y™ D), 2). In the works [19], [16]z is
allowed to be a function depending on a possibly higher number
of derivatives ofy, rather than just — 1. In our setting, this is
Opn_o OPn_s equivalent to assuming that in AL, rather than being invert-
)= fla )+ ) e u Y igle s just left-invertible. W tly worki laxi
O u ible, is just left-invertible. We are currently working on relaxing
3=0 Al and replace it by the weaker left-invertibility &.

- . Assumption A2 (Stabilizability)The origin of (1) is locally
< < w = - - . . . .
where0 < ny < n (n = 0 indicates that there is no depenstablhzable (or stabilizable) by a static functionagfi.e., there

Ny —2

(pn—l(mv

dence onu). In the most general casg; = ;|- o u(d), : ) U
i—= 19 ) n— 1 Ingsome Ca:fs h(g)ow(g\;e? we ’rﬁay)havgmsts a smooth function(x) such that the origin is an asymp-
th;[(p;/ _(p(l ) f.or ali = 1 ' r— 1 ar’1d Some in- totically stable (or globally asymptotically stable) equilibrium

. . ; ointof& = f(x, u(x)).
tegerr > 1. This happens in particular when system (1) et Remark 2: Assumption A2 implies that the origin of the ex-

a well-defined relative degree Here, we do not require the . . .
system to be input-output feedback linearizable, and hencet?gded system (3) is locally stabilizable (or stabilizable) by a

possess a well-defined relative degree. In the case of systef nsCtlon of.X as well. A proof of f[he local st_abl_llzab lity prop-

. ' : I - _erty for (3) may be found, e.g., in [17], while its global coun-
with well-defined relative degree,, = 0 corresponds to havmgt i Ik £ the int tor backst
r > n, while n, = n corresponds to having = 0. Next, aug- erpart is a well known consequence of the integrator backstep-

ment the system dynamics with, integrators on the input side, EI)'Irr\]gr(Ia?cl)Tr]ema (esii,n sllgd’e[?ﬁ;;r:‘;)?.tﬁf](eotre[:gédcsrglﬁg é) 1t0h]()e.re
which corresponds to using a compensator of orderSystem exists a sr,n\(lnvoth con?r@i X) such that i):s origin ig asymptoti-
(1) can be rewritten as follows: (X) g ymp

cally stable under closed-loop control. L Btbe the domain of
attraction of the origin of (3), and notice that, when A2 holds
= f(z,21) 21=29,...,%n, = 0. (2) globally,D = R™ x R™«.
Remark 3: In [21], the authors consider affine systems and
Define the extended state variabte = col (z, z) € R"*"*, use a feedback linearizability assumption in place of our A2.

and the associatesktended system Here, we consider the more general class of nonaffine systems
for which the origin is locally stabilizable (stabilizable). In this
X = Fo(X) + g respect, our assumption A2 relaxes also the stabilizability as-

sumption found in [19], while it is equivalent to [1, Assumption
y =he(X) 3) 2.
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I1l. N ONLINEAR OBSERVER |ITS NEED AND STABILITY whereL is an x 1 vector,£ = diag [p, R p"], andp €
ANALYSIS (0, 1] is a fixed design constant.

Assumption A2 allows us to design a stabilizing state feeﬂ— Notice that (7) does not require any kpowledgéHn‘l and
back controby = ¢(z, z). In order to perform output feedback as the advantgge of 9per§t|ngmmoord|nates_. The observ-
controlz should be replaced by its estimate. Many researché"rg'“ty as_sumptlon Al '"_‘p'!es th_at the Jacobian of t_he map-
in the past adopted an input-output feedback linearizability N9 M with respect tar is invertible, and hence the inverse

; = of OH(z, z)/0% in (7) is well defined. In the work [2], the au-
tion [3], [9], [13], [7], [14] and transformed the system int§ ) -t
ilcj,:nn?al|ofr:3£n1 (91, [13], [7], [14] and transformed the system n thors used an observer structurally identical to (7) for the more

restrictive class of input-output feedback linearizable systems

with full relative degree. Here, by modifying the definition of

the mappingH and by introducing a dynamic projection, we

. = f(m, O) 4+ g(x, M) u considerably relax these conditions by just requiring the general
: S observability assumption Al to hold. Furthermore, we propose
II = &(x, 1), HeR a different proof than the one found in [2] which clarifies the

y =my. (6) relationship among (7) and the high-gain observers commonly
found in the literature.

In this framework the problem of output feedback control finds a Theorem 1: Consider system (2) and assume that Al is sat-

very natural formulation, as the firstderivatives ofy are equal isfied for O = R"*"«, the stateX belongs to a positively in-

to the states of the-subsystem (i.e., the linear subsystemyariant, compact sé?, sup,, v(t) < oo, and that there exists

The works [3], [9], and [7] solve the output feedback contra set(2, @ D> , which is positively invariant fo(z, z) and

problem for systems with no zero dynamics (ise.= n), so suchthaty. € R" | (y., z) € F()} is a compact set. Choose

that the firstr, — 1 derivatives ofy provide the entire state of the L = col (1, ..., I,,) such thats™ + 1"~ + -+ 4+ 1,, is Hur-

system. In the presence of zero dynamiéss{ibsystem), the use witz.

of input-output feedback linearizing controllers for (6) forces Under these conditions and using observer (7), the following

the use of a minimum phase assumption (e.g., [13]) since teo properties hold.

states of thdI-subsystem are made unobservable by such con-i) Asymptotic stability of the estimation error: There exists

trollers and, hence, cannot be controlled by output feedback. For 5,0 < 5 < 1, such that for alz(0) € {# € R™ | (4, 2) €

this reason the output feedback control of nonminimum phase (1}, and allp € (0, p), &(t) — =(t) ast — +oc.

systems has been regarded in the past as a particularly chali) Arbitrarily fast rate of convergence: For each positive

lenging problem. Researchers who have addressed this problem T ¢, there exists*, 0 < p* < 1, such that for all

T =Mit1, 1< <r—-1

(e.g., [21], [19]) rely on the explicit knowledge @~ in (5), p € (0, p*], |£(t) —z(t)]| < eVt >T.

x =M (e, col (21, ..., zn,)), SO that estimation of the first |n Section IV, we show that, by applying to the vector figla

n — 1 derivatives ofy (the vectory.) provides an estimate of,  syjtable dynamic projection onto a fixed compact set, the exis-
& =H"'(ge, col (21, - .., za,)), since the vector, being the tence of the compact positively invariant §ets guaranteed.

state of the controller, is known. Next, to estimate the derivatives  prgof: Consider the smooth coordinate transformation
of y, they employ an high-gain observer. Both the works [21]

and [19] (the latter dealing with the larger class of stabilizable ye = H(z, 2)

systems) rely on the knowledge &f~' to prove closed-loop
stability. In addition to this, the work in [1] proves that a sepa?
ration principle holds for a quite general class of nonlinear sys-
tems which includes (1) provided that—! is explicitly known

and that the system is uniformly completely observable. Somghere (-, -) and 3(-, -) are smooth functions and the pair
times however, even if it existd{~' cannot be explicitly calcu- (A., B.) is in Brunovsky canonical form. Similarly, it is not
lated (see, e.g., the example in Section V) thus limiting the agifficult to show that the coordinate transformation

plicability of existing approaches. Hence, rather than estimating

y. and using{ (-, -) to getz, the approach adopted here is to ge = H(Z, 2)

estimater directly using a nonlinear observer for (1) and usinﬁ1
the fact that the-states are known. The observer has the form

hich maps (1) to

Ve = AcYe + Bela(ye, 2) + B(ye, 2)v] (8)

aps the observer dynamics (7) to

>

?je = Acge‘l'Bc[a(yev Z)'I'ﬂ(’gm Z)'U]'I'gilL[ye,l_'ge,l} (9)

& =f(# 2 )
" -1 Define the observer error in the new coordinages= g — ye.
2 f(&, =) + [W} ELL[y(t) — (1] Then, the observer error dynamics are given by
&Xr
L o1 ~
9(t) =h(z, z1) @ Y= (Ac = E7ILC,) ge

B Ue, 2 3(y — — , 10
IThroughout this section, we assume Al to hold globally, since we are in- +Bclalfe, 2) + B(ge, 2)v = alye, 2) = Blye, 2)v]  (10)
terested in the ideal convergence properties of the state estimates. In the next . .

section, we will show how to modify the observer equation in order to achie\yg%erecc : [1-/ 0, . < O]-.NOte that, iny. COOfd'_nates-.the ob-

the same convergence properties when A1l holds over ti@ seR™ x R™=.  server (7) is almost identical to the standard high-gain observer
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used in, e.g., [19] with aimportant differencewhile c and3in that V, < @\, (P) implies that ||g.]| < & and
[19]depend osat (. ) [wheresat(-) denotesthe saturation func-v/,(0) 2 Vo(2(0)) < (1/p2 DN Apax(P)||7:(0)]|2. More-
tion] and, hence, the nonlinear portion of the observer error dyyer, from (15)

namics is globally bounded whén € F(2), a andg in (10) 1

do not contain saturation and, thus, one cannot guarantee global V,(t) < — <_ - 2||P||7) l|77]]

boundedness of the last term in (10). Since our observer operates P

in z coordinates, saturatiarannot be induceth y. coordinates 1 1

and therefore, without any further assumption, we cannot prove < _m <; - 2||P||7> Vo(t).

stability of the origin of (10). The assumption concerning the ex- )

istence of addresses precisely thisissue since it guarantees t]l{agrefore, by the comparison lemma (see, e.g., [22])) sat-
Je(t) = H(&(t), 2(t)) is contained in acompactsetforatk 0. iSfies the following inequality:

Define the coordinate transformation 1 1
) V(1) <V, (0) exp{—)\—P (- - 2||P||7) t}
p=EG &2diag |~y ——5, .. 1] (11) max(P) \ p
p p )‘maX(P) ~ 2 -1
In the new coordinates the observer error dynamics are given by < W (17 ()] exp{—t/Amax (P)(p™" =2[|P[|7)}
b=l (A, — LC.)i (16)
p which, for sufficiently smallp, can be written as

+B.[a(fe ) + B 2)v — aye, 2) = Blyer 2] (12)

where, by assumptiod. — LC.. is Hurwitz. Let P be the so-
lution to the Lyapunov equation

Vo(t)g%exp{—%t}, ai, as > 0.
p" P

An upper estimate of the tinE such that|j.(t) — y.(t)|| <€

P(A. - LC.) + (A. - LC.)"P = -1 (13) (and, thus)|z(t) — z(t)|| < €) forallt > T, is calculated as
and consider the Lyapunov function candidetér) = o™ Po. follows:
Calculate the time derivative &f, along ther trajectories % exp {_@ t} < A nin(P)
. 207N p
Vo=— + 20" PB,

p forallt > T = p/asIn(ai/(€2p* Amin(P))). Noticing that
[a(@es 2) + B, 2)v — a(Yes 2) — Bye, 2)v]. (14) T — 0asp — 0, we conclude thal” can be made arbitrarily
) . R small by choosing a sufficiently smaif, thus concluding the
Since (#(t), 2(t)) € @ for all ¢t > 0, we have that proof of part ii). -
(ve(t), 2(t)) € F(©?) and, hence, for alli > 0, ° Remark 4: Using inequality (16), we find the upper bound
Ye(t) € {yel(ye, z) € F()} which, by assumption, is for the estimation error in.-coordinates
a compact set. This, together with the fact that, fortalt 0,

X(t) € Q andsup;>qv(t) < oo, implies that there exists Amax(P)  _(ne1y -
a fixed scalary > 0, independent of, such that the time [1gell < m p 19 (0)]
derivative ofl4y can be bounded as
1712 |17]J2 rexp{—t/(2Amax(P)) (0" = 2| PI)}. (A7)

V, < ==+ 2||P|Il|7ell 17]] < - 2P|yl _ _ - :
- p + 20 Plligell 171 < p + 202117 Hence, duringthe initial transieft, () may exhibit peaking, and

o (15) the size of the peak grows largeradecreases and the conver-
Defining p = min{1/(2[|P||y), 1}, we conclude that, for all gence rate is made faster. Refer to [18] for more details on the
p € (0, p), the origin of (12) [and, hence, also the origin Ogeaking phenomenon and to [3] for a study of its implications on
(10)] is asymptotically stable which, by the smoothnes2{of oyt feedback control. The analysis in the latter paper shows
implies thati(t) — () ast — oo. This concludes the proof ihat 4 way tdsolatethe peaking of the observer estimates from the

of parti). system states is to saturate the control input outside of the com-
As for part i), note that pactsetofinterest. The same ideahas then been adoptedin several
Amin(E'PE") > Amin(€)*Amin (P) = Amin(P) otherworksinthe outputfeedback controlliterature (see, e.g., [3],
) [9], [19], [12]-[14], [7], and [1]). Rather than following this ap-
sinceAin(£') = 1. Next proach, inthe nextsectionwe will presentanewtechniqekrto
Aman (€' PE") < 1/(p2(n71)))\max(P) inate(rather than justisolate) the peaking phenomenon which al-

) lows for the use of the weaker assumption Al.

SinceAmax (&) = 1/p(»=1. Therefore
- . N 1 . IV. OUTPUT FEEDBACK STABILIZING CONTROL
/\min(P)“ye“2 < y;rglpgl e < Bm 1) /\maX(P)||ye||2- . . .
p Consider system (3), by using assumption A2 and Remark

Define € so that||.|| < € implies that||z — z|] < e 2 we conclude that there exists a smooth stabilizing control
(the smoothness ofH{~! guarantees that is well-de- v = ¢(x, z) = ¢(X) which makes the origin of (3) an asymp-
fined). By the aforementioned inequality, we havéotically stable equilibrium point with domain of attractidn
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Fig. 2. Domaing’,, C, C; violate some of the requirements i)—iv) in A3, while does not.

By the converse Lyapunov theorem found in [11], there existdsis a set in Y coordinates which contains the image unéer
continuously differentiable functiol defined onD satisfying, of a level sefz of the Lyapunov functiorl” and is contained
forall X € D, in the image undef of the observable s&?. This guarantees
in particular thatQz: c O, and thus, when the state feedback
e ([[X]) < V(X) < el X)) (18) controller is employed, the phase curves leaving fegmever
lim (| X]|]) =00 (19) exit the observable regio®. Furthermore, it is required that
X=9D C possesses some basic topological properties: It is asked that
ov the boundary of be continuously differentiable [part i)], every
ax e(X) + gev) < —as([|X])) (20) glice ofC obtained by holding: constant ag, C7, is convex
wherew;, i = 1, 2, 3 are classC functions (see [8] for a defi- [partii)], the normal vector to each sli¢& (which is given by
nition), anddD stands for the boundary of the $2tGiven any [0g/dv.(ye, z)] ") does not vanish anywhere on the slice [part
scalarc > 0, define ii)] and, finally, it is asked that the sétis compact in the. di-
A . rection [part iv)]. Part iv) can be replaced by the slightly weaker
Q. ={X e R"T™ [V <c}. requirementthdt); ,. C? is compact{2? is defined in the next
Clearly, Q. c D for all ¢ > 0 and, from (19),Q2. becomes section), with minor changes in the analysis to follow.
arbitrarily close taD asc — oo. Next, the following assumption  To further clarify the topology of the domains under consid-

is needed. eration, consider the safs toC, in Fig. 2, corresponding to the
Assumption A3 (Topology 6f): Assume that there exists acasey. € R?, z € R. While they all satisfy part i); does not
constant > 0 and a set such that satisfy part ii) since its slices alongare not convexC, satisfies

part ii) but violates requirement iii) because the normal vector
F(@z) c € CY(=F(0)) (21) to one of the slices has no components in ghalirection.Cs
whereC has the following properties. satisfies parts i)—iii) but violates iv) since the area of its slices
i) The boundary o€, 9C, is ann — 1 dimensional(C! sub- 9rows unbounded as— oo. C, satisfies all the aforementioned
manifold ofR™, i.e., there exists &" functiong: C — R requirements.
such thatC = {Y € C|g(Y) = 0}, and(dg/aY) T # Note that, when the plantis UCO (and, thtis= R™ x R™+)
0onocC. and F(R"*t"«) = R™*"« A3 is always satisfied by a suffi-
i) C* ={y. € R"|(y., z) € C} is convex for alz € R"+. ciently large seC and anyc > 0. In order to see that, pickny
iii) Oisaregularvalue of(-, z) for each fixedz € R™,i.e., ¢and choos€ to be any cylinde{Y € R"*" | |[y.|| < M},
for all y. € CZ, (0g/0y.)(ye, Z) # 0. whereM > 0, containingF(Qz). The existence of is guar-
V) Uzegn. C* is compact. anteed by the fact that the s&((2;) is bounded. More gener-
Remark 5: See Fig. 1 for a pictorial representation of conally, the same holds whefi(R"*"+) is not all of R"*"« and
dition (21). This assumption requir@s primis that there ex- )? 2 F(R™, z) is convex for allz € R™.
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Finally, notice that when the plant mot UCO butO = X x  represent they. and »z components of the normal vector
R™, whereX’ is an open set which is not all &", and the N(Y') to the boundary ofCc at Y, i.e., N(YP) =
origin is globally stabilizable (i.e., A2 holds globally), one carol (N,, (YP), N.(YP)) (the functiong is defined in A3).
choose& = D xR™+, whereD C R™ isanyconvex compact set Further, L;H and L., g are the Lie derivatives off and
with smooth boundary contained i and containing the point (57, z) along the vector field$” = col (f, 22, ..., zn,, v)
H(0, 0) (i.e., the origin iny, coordinates). The scalaris then andG = L;.F, respectively, i.e.,
the largest number such th&{2z) C C (notice, however, that

does not need to be known for design purposes). Consequently, oM ; . p )

in the particular case when, = 0 (and hence the control input “#’* = 5-p F@", 2, y) + 02 C

does not affect the mappirtg) and A2 holds globally, one can g dg . R
chooseC = D, whereD is defined above. Leg = 97 LiH+ 9 z =N, (YP)TLFH + N.(YP)T2

A. Observer Estimates Projection
) andl' = (S&€)~1(S€)~T, whereS = ST denotes the matrix

As we already pointed out in Remark 4, in order to isolate ”!ﬁ}uare root o [defined in (13)].
peaking phenomenon from the system states, the approach gefe dynamic projection (23) is well-defined since A3, part
erally adopted in several papers is to saturate the control inmﬂ guarantees thal, does not vanish (see also Remark 5).

to prevent it from growing above a given threshold. This teche following lemma shows that (23) guarantees boundedness
nigue, however, does not eliminate the peak in the observer egiy preserves convergenceidt.

mate and, hence, cannot be used to control general systems likeamyma 1: If A3 holds and (23) is used:

the ones satisfying assumption Al, since even when the syster]) Positive invariance ofF=1(C): if (&7(0), 2(0)) €
state lies in the observable regiohC R™ x R™+, the observer FL(C), then(&P (¢), z(t)) € F~1(C) for all t > 0.

estimates may enter the unobservable domain where (7) is Nok in addition, (z(t), 2(t)) € Qz for all t > 0 and the as-

well-defined. It appears that in order to deal with systems thél‘imptions of Theorem 1 are satisfied, then the following prop-

are not completely observable, one has to eliminate the peakifig, holds for the integral curves of the projected observer dy-
from the observer by guaranteeing its estimates to be confi ics (7), (23).

in a prespecified observable compact set. _ i) Preservation of original convergence characteristics: prop-

A common procedure used in the adaptive control literatuggies i) and ii) established by Theorem 1 remain validifbt
(see [4]) to confine vectors of parameter estimates within a de-  prgof: We begin by introducing another coordinate trans-
sired convex set is gradient projection. This idea cannot be ﬂﬁ'rmation,( — SE'y., (similarly, let (P = S&'§P, (P =
rectly applied to our problem, mainly becaugés not propor- SEGPY, letting G = diag[SE’, I, xn.], and IettingC’ be the
tional to the gradient of the observer Lyapunov function anﬂ'hagé of the sef under the Iineaf mag e A (¢, 2) €
thus, the projection cannot be guaranteed to preserve the conyer: 1 y PSR

. . . o T 1(¢, C}. Let N/(¢, =), NL(¢, =) be the

gence properties of the estimate. Inspired by this idea, howevaergdz c| G~ col (G, z) € C} (G 2), N2(C, 2) ¢

. S . omponents of the normal vector to the boundarg’of
we propose a way to modify the vector fiefdwhich confines b v

N e - . N The reader may refer to Fig. 1 for a pictorial representation of the
Z to within a prespecified compact set while preserving its COats under consideration. In order to prove part i) of the Lemma

vergence properties. we have to show that the projection (23) rend@s positively

Recall the coordinate transformation defined in (4) and letinvariant set fo’ P The coordinate transformation (22) maps

(23) to

g =M@, 2) g0 =9l e
VP = FGP, 2) = col (i, 2), (22) P _d . p [ P OH. 24
( ) (9, 2) e = {H(z", 2)} 5P & + 55 - (24)

wherez” is the state of therojectedobserver defined as Lo N,. (}A/P)Lég
» N P )T N, (YP)TTN,, (YF) 25
o LyH- ACSPLY RGP 7 if L,g > 0andY'? € ac
P | L027 N, (VP)TON, (YP) 92 |
= ‘ ‘ LiH otherwise.

if Le,g>0andY” € aC
F(@P, 2, y), otherwise In order to relateV/ (7, z) andN. ({7, 2) to N, (7, z) and
(23)  N!((P, 2), recall from A3 that the boundary 6fis expressed as
where the seC = {Y € R"*" | g(Y') = 0} and hence the boundary
. . ofCisthe se®C’ = {¢ € R" |g((SE")~L¢, z) = 0}. From
5 99 . 5 a9 . this definition we find the expression af. and N, as
07 = g ] w0 = |G )| P <

1 (AP nN—T P P1T n—T P
2The projection defined in (23) is discontinuous in the variahletherefore Ng(c ,2) =(S€&)" [09(Y")/oy. ] = (SE) Ny, Y")
raising the issue of the existence and uniqueness of its solutions. We refer thg R ~p
reader to Remark 7, were this issue is addressed and a solution is proposedN_ (¢*, z) = N, (Y 7).
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The expression of the projection (23){rcoordinates is found where
by noting that

~ NIT LAS(S‘IH +N,T,
p(¢?, (LpSEH), 2, 2) = ¢ (Lg ) (

=
& et N¢ N
N, (NTL.H+ N3 is nonnegative since, by assumption
SE'LyH — (SE)~T == ( T A d
_ v TN, (26) N (LpSEH) + N2> 0.
if L,g > 0andY? € oC X
; Using the fact that(, € C' and that(¢?, 2) lies on the
SE'LyH otherwise 9 (, 2) (C7, 2)

boundary of’, we have that the difference vect@® — ¢, 0)
Lo T . points outside of’ or, equivalently_” — ¢ points outside of the
and then substitutingVl = (S&)" "N, , N; = N., and gjicec’” = {¢ € R*| (¢, 2) € C'}. Using the definition o,

LM = (SE)~Y(LySEH), to find that we have that the s€~ is the image of the convex compact set
C*, defined in A3, under the linear ma§t’ and is, therefore,
( Né (NéT(LFSE’H) + N;Té) comgggt arld convex as WeII.. Combirjilrlg these two facts we have
(L;SEH) — — that (" N/ > 0, thus proving that/” < V, < 0, which
b NE N{ concludes the proof of part ii). [ |
& = AT ir aer T Remark 6: Part i) of Lemma 1 implies that, with dynamic
it N (LpSEH) + N2 220 projection, the requirement in Theorem 1 that there exists a pos-
and(¢P, z) € aC’ itively invariant set for (2, z) is satisfied with2 = F=1(C).
( (L;56H) otherwise. To see that, note that
(27)
Next, we show that the boundary of the domé@iris positively Cc U c* | x R
invariant with respect to (27). In order to do that, consider the =

continuously differentiable functiovi: = g((S€’)~1¢, z) and
calculate its time derivative along the vector field of (27) whe@nd, thus

(P, 2) € ac’ . . .
{ye € R" | (ye, 2) € F(D)} ={ve € R" | (e, 2) € C}
. A P . z
Ver = NUEP, )78+ NP, 2 < e
zER™u
T T T.
_ /T(LA SEH) — Né Né (Né (LpSEH) + N Z) which, by part iv) in A3, is a compact set.
T MR N' TN Remark 7:In order to avoid the discontinuity in the
¢ right-hand side of (23) one can employ the smooth projection
+ Nz =0. idea introduced in [15]. In this case, (21) in A3 should be

replaced by the following:

SinceC’ is positively invariant, so i€ and, thereforeF—*(C).
The proof of part ii) is based on the knowledge of a
Lyapunov function for the observer i coordinates [see

(11)]. Letting ¢ = Sv, we have that, in new coordmates,ac Z Y €Clg(Y) = 0},0C = {V €C|g(Y) = 1}. The

V, = i P = (578)(Sp) = (T¢ Now let VP = ¢P'¢P 9% A . )

be a Lyapunov function candidate for the projected observ@ll'l? %’rf G d!{f/iNytEi Frivyf‘-' Iln r(nzn?:) Slh\?vmdlgerr]m\j\lltf[f]“?dbby’ anldin

error dynamics in transformed coordinates and recall that, ght modiication of -emma 93 d show that, by applying

assumption,F(Q2:) C C and, thus(z, z) € Qz. The latter e smooth projection t@, the setF~!(C") (rather than the set
N ' 7 ° C) is made positively invariant.

i H H !/
fact implies that(y%z) e_C_or, wh_at |s_the Sa,m«’ %3 € C.' Remark 8: From the proof of Lemma 1, we conclude that
From (27), when(¢*, z) is in the interior ofC’, or (¢*, 2) is X P e _ o
on the boundary o’ andN’T(LA SEH) + N'T5 <0 (e (23) confines(z", z) within the setF~'(C) which is, in gen-
¢ F z "~ eral, unknown since we do not kngi!, and is generallyiot

theunprojectedipdate is pointed to the interior 6f), we have convex (see Fig. 1). Itis interesting to note that applying a stan-

that VAOP = Vo < 0. Let us now consider all remaining Cas€34ard gradient projection fok over an arbitrary convex domain
ie., (¢, 2) € aC and N, (L SEH) + N, 5 > 0 g broJ y

does not necessarily preserve the convergence result i) in The-
orem 1.

F(Qs)ccCccCcy (29)

where C and C satisfy properties i)-iv) in A3 and

. P .
P _ofPF _ oFPTEF  _ oFPT
Vo =200¢ =2¢0 ¢ =2 B. Closed-Loop Stability
: [(Lﬁsng)—é—p(éP7 (LpSEH), z, é)Né(CAP./ z)} To perform output feedback control we replace the state feed-
o . back lawv = ¢(z, z) withi = ¢(2F, z) which, by the smooth-
=V,(¢") —2p¢" N (28) nessofp andthe factthat” is guaranteed to belongte~!(C),
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is bounded provided thatis confined to within a compact set.seen thaiinf x (g)cq, (T\'(O)) = d/D = 2 7,. We have, thus,

In the following we will show thatv makes the origin of (3) shown that for any phase cur&(t) leaving from the set
asymptotically stable and th&. is contained in its region of (). there exists a uniform lower bour#; to the exit time
attraction, for alll < ¢ < @3 The proof is divided in three from Qz which is independent gf. Choosel, € (0, T1), let
steps. A = supyeq_ [|0V/0X||, and¥ be the Lipschtiz constant of
1) (Lemma 2).Invariance of Qz and uniform ultimate over the compact set
boundednessUsing the arbitrarily fast rate of conver-
gence of the observer [see part ii) in Theorem 1], we
show that any phase curve leaving frdim cannot exit F Y e x
the set2; and converges in finite time to an arbitrarily 2€QZ
small neighborhood of the origin. Here, Lemma 1 plays
an important role, in that it guarantees that the peakify A3, X () € Q. C Qz implies X(t) € F~!(C) and thus
phenomenon is eliminated and thus it does not affect from Theorem 1, part ii), and Lemma 1 there exjsts (0, 1)
allowing us to use the same idea found in [3] to provéuch that, for alp € (0, 7], [|=(t) — 27 (t)|| < e forall ¢ €
stability. [To, T1). Now, using the functiof’ deflned in (18)—(20), a stan-
2) (Lemma 3)Asymptotic stability of the originBy using dard Lyapunov analysis shows that, fora# (1o, 17)
Lemma 2 and the exponential stability of the observer es- )
timate, we prove that the origin of the closed-loop system V>d = V<-(p-1)A7€
is asymptotically stable.
3) (Theorem 2)Closed-loop stability:Finally, by putting which, sinced. < ¢, implies thatQ: is positively invariant
together the results of Lemma 2 and 3, we conclude th&t = o), and that the phase curvés§(z) enter and stay in
closed-loop stability proof. the set(}. in finite time. u

The arguments of the proofs are relatively standard (see, e. g?Remark 9:_The use of the projection for the obseryerestimate
[1] and [19]) and so are sketched. plays a crucial role in the proof of Lemma 2. Asis made

Lemma 2: For allc € (0, ), ¢ > 0 andy > 1 such that smaller, the c_)bserver pea_k may grow Iarger, thus generating a
large control input, which in turn might drive the system states
X outside off). in shorter time. The dynamic projection makes
sure that the exit timé? is independent of, thus allowing one

there exists a numbér € (0, 1) such that, for alb € (0, 7], to choose independently off’.

de=azoaz*(uA7e) <c

for all (X(0), 7 (0)) € A, where Lemma 3: Under the assumptions of Lemma 2, there exists a
’ ' positive scalae* such that for alk € (0, *] the origin(X, = —
#P
A= e R | X € Q, c F-l(c ) = (0, 0) is asymptotically stable
X (@7, 2) ©} Sketch of the ProofLet z¥ = z — &F. By (17) and

,\P . - .
the phase curveX (¢) of the closed-loop system remain con- Lemma 1, the origin of thg. — 7, dynam|cs is exponentially

P _ 1 _ =1 (sP
fined in Qz, the setQ,, C Q. is positively invariant, and is stable. Recalling that™ = 7~ (ye, z) — . .(y“ J Z)J from
reached in finite time. = the smoothness ¢ we conclude that the origin of the” dy-

Sketch of the Proof:Since(&7(0), 2(0)) € F~1(C), by namics is exponentially stable as well. By the converse Lya-

Lemma 1, part i)(#7(t), z(t)) € F~1(C) forall ¢ > 0. Let punov theorem there exists a Lyapunov funcfigiiz?), a pos-
0z = {» E R™ | (z, 2) e (=} and notice that - itive numberr, and positive constants, k., k3 such that, for

allzf € B, = {#F e R"|||z7]| < r}

- ~P —1
X ez and (a: ,Z) eF (C) k1||ffp||2 SVZ < k2||i'P||2

=ifel| || xa V) < k|27,

zENZ
€% Choose* € (0, 7) suchthatl.. = azoaz* (A7 e*) < . For

anye € (0, €*], choosé asin Lemma 2 and pick anye (0, p].
Then, the following Lyapunov function:

2\/cavA
Vo(X, #7) = V(X) + A\/V/(FP) A > —‘/g_”
[1fe(X) + ged (&7, 2)|| < D. °
readily allows one to conclude that the origiki, ) = (0, 0)
is asymptotically stable. [ |

proving that the)\%'t time from the seé?: has a positive  \ye are now ready to state the following closed-loop stability
lower bound, 77", independent ofp. Further, letting heorem.

d = dist(Qz, Q) = infx, eqrx,e0, — Xof|, itisreadily  Theorem 2: Suppose that assumptions A1, A2, and A3 are

3Recall thatz is a positive constant satisfying A3 and hence its size is cot$at'5ﬂed Then, for the closed- |00p system (3) (7) (23) with
strained by the topology of the observable &et control lawd = ¢(2%, z), there exists a scalat € (0, 1) such

which is a compact set independentpofHence, there exists a
bounded positive real numbérindependent of such that, for
all X € Qzand all(z”, 2) € F71(0),

Therefore, for alt such thatX (¢) € Qz, || X (¢) — X(0)|| < Dt,
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that, for allp € (0, p*], the setA is contained in the region of V. EXAMPLE
attraction of the origin( X, ) = (0, 0).

. Consider the following input—output linearizable system:
Sketch of the ProofBy Lemma 3, there exists* > 0 ! Wing input-output i 'z y

such that, for alk € (0, €*], the origin(X, 2¥) = (0, 0) is &1 =To

asymptotically stable. Lef\, be its domain of attraction. For ) )

any (X(0), 27(0)) € A, use Lemma 2 to fingg € (0, 1) so iy =(1+21)exp(ay) +u—1

that for a_IIp _e_(O, _ﬁ] the phase curves of the closed-loop system y = (12— 1)% (30)
enterA. in finite time. [ ]

Remark 10:Theorem 2 proves regional stability of theThe control input appears in the first derivative of the output
closed-loop system, since given an observability dom@jn ] )
and provided A3 is satisfied, the control law together with g = 2(w2 = 1)(1 + 1) exp(a1) + 2(w2 = 1)(u = 1).
(7) and (23), make the compact sétn estimate of the domain \gtice, however, that the coefficient multiplying vanishes

of attraction for the origin of the closed-loop system. Thﬁ/henxz — 1, and hence system (30) does not have a well-de-

difference between Theorem 2 and a local stability result ligs.q relative degree everywhere. Sinceppears iy, we have
in the fact that here the domain of attraction fois at least as y,o+,. — 1 therefore. we add one integrator at th’e input side

large a2, and not restricted to be a smathknownmeighbor-
hood of the origin. Further, the size 0f is independent o Z1=v u=2z. (31)
and thus the domain of attractiaoes notshrink as the rate } o
of convergence of the observer is made faster (that is, whER€ Mapping” is given by
p — 0). The next corollary gives conditions for the recovery [y
of the domain of attraction of the state feedback controller by - _ '1) = Fla, z1) = [H(L 21)}
output feedback. i z1

Corollary 1: Assume that Al is satisfied o = R"**"«, -
YV? = F(R", %) is convex for aliz € R™+, and A2 holds. Then, [ (w2 — 1)
givenanysetD’ C int(D), there exists ascalat € (0, 1) such = | 2(z2 — D[(1 + z1) exp(a?) + (21 — 1] | . (32)
that, for allp € (0, p*], the setD’ is contained in the region of
attraction of the originX = 0. Moreover, ifD = R"™"«, the -
origin X = 0 is semiglobally asymptotically stable. The first equation in (32) is invertible for all, < 1, and its

Proof: By property (19) of the Lyapunov functiori(X'), inverseis given by, = 1—,/y. Substitutinge, into the second

given any sefD’ C int(D), there existg > 0 such thatD’ C  equation in (32) and isolating the terman, we get
Q.. By Remark 5, ifO = R"*"«, A3 is satisfied byany¢ € .
(0, 00) and a sufficiently larg€. Chooser > c. By Theorem (1+ 21) exp(a}) = W
2 we conclude that there exist§ € (0, 1) such that, for all 2y

p € (0, p7], the origin of the closed-loop system is asymptolsince (1 + ) exp(«?) is a strictly increasing function, it fol-
"i"’}yy stable and the sed = {(X, ") € R*"*"™ | X € Q., |ows that (33) is invertible for alk; € R, however, an analyt-
(&7, 2) € F~(C)} is contained in its domain of attraction.ica| solution to this equation cannot be found. In conclusion,
Thus, in particularp’ is contained in the domain of attractionassumption A1 is satisfied on the domaih= (z €R? |2y <
of X = 0. If D = R+nu thenD’ can be chosen to be anyi} x R, but an explicit inverséz, z1) = F~'(y., z1) is not
compact set and thus the oright = 0 is semiglobally asymp- nown. The fact that system (30) is not UCO, together with the
totically stable. . B nonexistence of an explicit inverse to (32), prevents the applica-
Remark 11: A drawback of the result in Theorem 2, sharegs, of the output feedback control approaches in [3], [21], [9],
by the works in [21], [19], an_d [1], is that separation is achlevq?g ,[121, 23], [7], [14], and [1].
between the observer design and the state feedback con rqgo find a stabilizing state feedback controller, note that the
design for theugmentedystem (3). In order to avoid increasedhyiended system (30), (31) can be feedback linearized by letting

complexity of the controller, it would be more desirable tq., _ (1 + z1) exp(22) + z1 — 1 and rewriting the system in
achieve separation between the observer design and the Sr@ﬁ

feedback control design for thagiginal system (1).

Z1

21

(33)

. A
coordinates. = col (z1, x2, T3):

Remark 12: As mentioned in Remark 5, if the plant is UCO 1 =T
(and henc® = R" x R"+) and)* = F(R", z) is a convex set ]
for all z € R™, assumption A3 is automatically satisfied by a T2 =T3
suﬁicieqtly large cylindrical sef. Even i.n this case, itH=tis i3 = 29 exp(22) (222 + 221 + 1) + v. (34)
not explicitly known and one wants to directly estimate the state
of the plant, one should employ the dynamic projection (28hoosev = —zexp(z?)(22} + 221 + 1) — Kx., where

since the standard saturation used, e.g., in [3] and [19] can olly= [1, 3, 3], so that the closed-loop system beconigs=
be applied to a high-gain observergn coordinates. Clearly, (A.—B.K) z. with poles placed at 1. Then, the origin:. = 0
the only instance when dynamic projection can be replaced igya globally asymptotically equilibrium point of (34), and As-
saturation of the observer estimates is when the observabitymption A2 is satisfied witth = R3. Let P be the solution
mapping is the identity. of the Lyapunov equation associated4p — B.K, so that a



MAGGIORE AND PASSINO: SEPARATION PRINCIPLE FOR A CLASS OF NON-UCO SYSTEMS 1131

Lyapunov function for system (34) i§ = 2! Pz, and any set ]
Unobservable boundary

Q. 2 {z. € R¥|V(2.) < c}, with ¢ > 0, is contained in the Y3
region of attraction for the origin. Equation (35) is shown at the T /
bottom of the page.

Next, we seek to find a sé& satisfying Assumption A3. To
this end, notice that

V=FO)=F({zeR* z1eR|za<1}) | e :
={Rt -0} xR x R.

Y

Next recall from Remark 5 that, since A2 holds globallycan

be chosen to be the cylindér x R, whereD is any compact
convex set in the upper half plaq&* — 0} x R containing

the pointH (0, 0) = (1, 0). For the sake of simplicity choose =~ 7 {7
D to be the disk of radiuss < 1 centered at1, 0), so that Yz’

C={Y eR®|(Y1-1)2+Y} <w?}, andC C Y, as depicted

in Fig. 3. We stress that our choice is quite conservative and is

made exclusively for the sake of illustration. Ornedas been

chosen, the control design is complete and the output feedback

controller is given by

Flo)

21:—3726Xp{a:1 }[ a:f—l—l]—a:l 3zF

-3[1+a] exp{ 1)’ +2z1—-1] (36) -
letc < Amin (P) and note that, for alt. € y.,

wherez” (1) is the solution of (23) Withf(i:, z, y) defined in B 2 B 2
1— _ <o — 1) <1+ _>
< /\mm ( )) min ( )

Fig. 3. Projection domaid.

(35) and

oH [ 0 ] oy _op_ |1
= Ny G2, 2) =90 — ¢ ‘
92 = |oar 1 ve (We » e~ o 2wy — Dag| <2 1 — =
(5 —1) 2(z2 — 1)z3] < + Amin (P) ) Auin (D)

Next, we seek to find such thatF(Qz) C C. Using the inequal-
ities above we have thatéf= min{c*, Amin (P)}, wherec* is
the largest scalar satisfying

P = [ (23 —1)? ]
© (208 - DI+ D) exp((@)?) + (21 - 1)] )

2
_OH , p OH | T B
Lift = (%Tpf(ﬂl7 ;2 Y) + B (37) < Amin (P)
Using controller (37), Theorem 2 guarantees that the origin . 2 _ 2
z. = 0 of the closed-loop system is asymptotically stable +4 <1 + ) ( €2 __ ) <w? (38)
and it provides an estimate of its domain of attraction. Amin (P ) Amin (P )

Specifically, given any positive scalar < ¢, there exists (note that* > 0 satisfying the inequality above always exists)
p* > 0 such that®), is contained in the domain of attractionthen 7 (0;) c F(Z) c € and, henceg satisfies A3.

forall 0 < p < p*. In what follows we will find the set  For our simulations we choose = 0.9 and, from (38), we
(z satisfying A3. Recalling that, inc.-coordinates2z is getz = 0.06. The initial condition of the extended system is
expressed agz. € R*|z/Pz.}, we have thatr. € Qz ggt toz1(0) = 0.05, 22(0) = 0.07, z3(0) = 0.1 [or 2,(0) =
implies |z;| < (¢/Amin (P)), ¢ = 1,2,3, and hence ¢ 474], which is contained insides so that Theorem 2 can be
Q= C Z 2 {z. € R3||z;| < (¢/Amin (P)),i=1,2,3}.Now applied. Finally, we choose the observer ghito becol (4, 4),

f(&, z,y) = |:(1 _|_j;1)exp{(ii'1)2} +2z1—1

N [ 0 2(dn — 1)
222 — 1) exp {(21)%} [2(81)% + 281 + 1] 2[(1+ &1) exp {(21)?} + 21 — 1]

-1

E7Lly — (42— 1)’]. (35)
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Fig. 4. Integral curve of the closed-loop system under output feedback. Bgmain
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p =02 (b)p = 0.05.

so that its associated polynomial is Hurwitz with both poles
placed at-2. We present four different situations to illustrate
four features of our output feedback controller.

1)

2)

0

3)

Arbitrary fast rate of convergence of the observer

Fig. 4 shows the evolution of the integral cur¥d¢), as

well as the control input, for p = 0.2 andp = 0.05.

The convergence in the latter case is faster, as predicted
by Theorem 1 (see Remark 4).

Observer estimate projection Fig. 5 shows the evolu-
tion of # andwv for p = 10~3 with and without projec-
tion. The dynamic projection successfully eliminates the
peak in the observer states, thus yielding a bounded con-
trol input, as predicted by the result of Lemma 1. Fig. 6
shows that the phase curVét) = F(X (¢)) is contained
within the setC for all ¢ > 0, confirming the result of
Lemma 1. In particular, Fig. 6 shows the operation of the
projection when the phase curve of the observerY{in
coordinates) hits the boundary 6f it forces Y 7 (¢) to

4)

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fig. 5. Observer states during the initial peaking phase with and without
projection,p = 10—3.

Fig.6. Phase curve of the observer with dynamic projection in the transformed

Y = F(X).

“slide” along the boundary af and preserves its conver-
gence characteristics. This is equivalent, indtdomain,

to saying that the phase curi®” (t), z;(t)) slides along

the boundary ofF~%(C) andz? (t) converges ta:(t).
Observer estimate projection and closed-loop sta-
bility . In Fig. 7 a phase plane plot far(t) is shown
with and without observer projection when= 10—*.

The small value op generates a significant peak which,

if projection is not employed, drives the phase curve
of the output feedback system away form that of the
state feedback system and, in general, may drive the
system to instability (see Remark 9). On the other hand,
using dynamic projection, the phase curve of the output
feedback system is almost indistinguishable from the
phase curve of the state feedback system.

Trajectory recovery. The evolution of the phase curve
X (¢t) for decreasing values @f in Fig. 8, shows that the
phase curve of the output feedback system approaches
the phase curve of the state feedback ong as 0 (see
Remark 11).
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