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A Separation Principle for a Class of Non-UCO
Systems
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Abstract—This paper introduces a new approach to output
feedback stabilization of single-input–single-output systems
which, unlike other techniques found in the literature, does not
use quasilinear high-gain observers and control input saturation
to achieve separation between the state feedback and observer de-
signs. Rather, we show that by using nonlinear high-gain observers
working in state coordinates, together with a dynamic projection
algorithm, the same kind of separation principle is achieved
for a larger class of systems which are notuniformly completely
observable. By working in state coordinates, this approach avoids
using knowledge of the inverse of the observability mapping to
estimate the state of the plant, which is otherwise needed when
using high-gain observers to estimate the output time derivatives.

Index Terms—Nonlinear control, nonlinear observer, output
feedback, separation principle.

I. INTRODUCTION

T HE area of nonlinear output feedback control has received
much attention after the publication of the work [3], in

which the authors developed a systematic strategy for the output
feedback control of input-output linearizable systems with full
relative degree, which employed two basic tools: an high-gain
observer to estimate the derivatives of the outputs (and hence
the system states in transformed coordinates), and control input
saturation to isolate the peaking phenomenon of the observer
from the system states. Essentially the same approach has later
been applied in a number of papers by various researchers (see,
e.g., [9], [12], [7], [13], and [1]) to solve different problems in
output feedback control. In most of the papers found in the lit-
erature, (see, e.g., [3], [9], [12], [13], [7], and [14]) the authors
consider input-output feedback linearizable systems with either
full relative degree or minimum phase zero dynamics. The work
in [21] showed that for nonminimum phase systems the problem
can be solved by extending the system dynamics with a chain
of integrators at the input side. However, the results contained
there are local. In [19], by putting together this idea with the ap-
proach found in [3], the authors were able to show how to solve
the output feedback stabilization problem for smoothly stabi-
lizable and uniformly completely observable (UCO) systems.
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The work in [1] unifies these approaches to prove a separation
principle for a rather general class of nonlinear systems. The re-
cent work in [16] relaxes the uniformity requirement of the UCO
assumption by assuming the existence of one control input for
which the system is observable. On the other hand, however,
[16] requires the observability property to be complete, i.e., to
hold on the entire state space. Another feature of that work is the
relaxation of the smooth stabilizability assumption, replaced by
the notion of asymptotic controllability (which allows for pos-
sibly nonsmooth stabilizers).

A common feature of the papers previously mentioned is their
input-output variable approach, which entails using the vector

as feedback, for some
integers , , where and denote the system output and
input, respectively. This in particular implies that, when dealing
with systems which are not input-output feedback linearizable,
such approach requires the explicit knowledge of the inverse
of the observability mapping, which in some cases may not be
available.

This paper develops a different methodology for output feed-
back stabilization which is based on astate-variable approach
and achieves a separation principle for a class of non-UCO sys-
tems, specifically systems that are observable on an open region
of the state space and input space, rather than everywhere. We
impose a restriction on the topology of such an “observability
region” assuming, among other things, that it contains a suffi-
ciently large simply connected neighborhood of the origin. The
main contributions are the development of a nonlinear observer
working in state coordinates (which is proved to be equivalent
to the standard high-gain observer in output coordinates), and a
dynamic projection operating on the observer dynamics which
eliminatesthe peaking phenomenon in the observer states, thus
avoiding the need to use control input saturation. One of the ben-
efits of astate-variable approachis that the knowledge of the
inverse of the observability mapping is not needed.

It is proved that, provided the observable region satisfies suit-
able topological properties, the proposed methodology yields
closed-loop stability. In the particular case when the plant is
globally stabilizable and UCO, this approach yields semiglobal
stability, as in [19], provided a convexity requirement is satis-
fied. As in [21], [19], and [1], our results rely on adding inte-
grators at the input side of the plant and designing a stabilizing
control law for the resultingaugmentedsystem. Thus, a draw-
back of our approach (as well as the approaches in [21], [19],
and [1]) is that separation is only achieved between the state
feedback control design for theaugmentedsystem and the ob-
server design and not between the state feedback control design
for theoriginal system and the observer design.
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II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider the following dynamical system:

(1)

where , , and are known smooth functions,
and . Our control objective is to construct a sta-
bilizing controller for (1) without the availability of the system
states . In order to do so, we need an observability assumption.
Define the observability mapping

...

...

( is the th derivative) where

...

where ( indicates that there is no depen-
dence on ). In the most general case, ,

. In some cases, however, we may have
that for all and some in-
teger . This happens in particular when system (1) has
a well-defined relative degree. Here, we do not require the
system to be input-output feedback linearizable, and hence to
possess a well-defined relative degree. In the case of systems
with well-defined relative degree, corresponds to having

, while corresponds to having . Next, aug-
ment the system dynamics with integrators on the input side,
which corresponds to using a compensator of order. System
(1) can be rewritten as follows:

(2)

Define the extended state variable ,
and the associatedextended system

(3)

where ,
, and . Now, we are ready to

state our first assumption.
Assumption A1 (Observability):System (1) is observable

over an open set containing the origin, i.e., the
mapping [where ] defined by

(4)

has a smooth inverse

(5)

Remark 1: In the existing literature, an assumption similar
to A1 can be found in [21] and [19]. It is worth stressing, how-
ever, that in both works the authors assume the setto be

. When that is the case, the system is said to be [20],
[19] UCO. In many practical applications, the system under con-
sideration may not be UCO, but rather be observable in some
subset of only, thus preventing the use of most of
the output feedback techniques found in the literature, including
the ones found in [21], [19], and [1]. On the other hand in
A1 the mapping , viewed as a mapping acting onparam-
eterized by , is assumed to be square (i.e., it maps spaces of
equal dimension), thus implying that can be expressed as
a function of , its time derivatives and , i.e.,

. In the works [19], [16], is
allowed to be a function depending on a possibly higher number
of derivatives of , rather than just . In our setting, this is
equivalent to assuming that in A1, rather than being invert-
ible, is just left-invertible. We are currently working on relaxing
A1 and replace it by the weaker left-invertibility of.

Assumption A2 (Stabilizability):The origin of (1) is locally
stabilizable (or stabilizable) by a static function of, i.e., there
exists a smooth function such that the origin is an asymp-
totically stable (or globally asymptotically stable) equilibrium
point of .

Remark 2: Assumption A2 implies that the origin of the ex-
tended system (3) is locally stabilizable (or stabilizable) by a
function of as well. A proof of the local stabilizability prop-
erty for (3) may be found, e.g., in [17], while its global coun-
terpart is a well known consequence of the integrator backstep-
ping lemma (see, e.g., [5, Th. 9.2.3] or [10, Corollary 2.10]).
Therefore, we conclude that for the extended system (3) there
exists a smooth control such that its origin is asymptoti-
cally stable under closed-loop control. Letbe the domain of
attraction of the origin of (3), and notice that, when A2 holds
globally, .

Remark 3: In [21], the authors consider affine systems and
use a feedback linearizability assumption in place of our A2.
Here, we consider the more general class of nonaffine systems
for which the origin is locally stabilizable (stabilizable). In this
respect, our assumption A2 relaxes also the stabilizability as-
sumption found in [19], while it is equivalent to [1, Assumption
2].
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III. N ONLINEAR OBSERVER: ITS NEED AND STABILITY

ANALYSIS

Assumption A2 allows us to design a stabilizing state feed-
back control . In order to perform output feedback
control should be replaced by its estimate. Many researchers
in the past adopted an input-output feedback linearizability as-
sumption [3], [9], [13], [7], [14] and transformed the system into
normal form

(6)

In this framework the problem of output feedback control finds a
very natural formulation, as the firstderivatives of are equal
to the states of the -subsystem (i.e., the linear subsystem).
The works [3], [9], and [7] solve the output feedback control
problem for systems with no zero dynamics (i.e., ), so
that the first derivatives of provide the entire state of the
system. In the presence of zero dynamics (-subsystem), the use
of input-output feedback linearizing controllers for (6) forces
the use of a minimum phase assumption (e.g., [13]) since the
states of the -subsystem are made unobservable by such con-
trollers and, hence, cannot be controlled by output feedback. For
this reason the output feedback control of nonminimum phase
systems has been regarded in the past as a particularly chal-
lenging problem. Researchers who have addressed this problem
(e.g., [21], [19]) rely on the explicit knowledge of in (5),

, so that estimation of the first
derivatives of (the vector ) provides an estimate of,

, since the vector, being the
state of the controller, is known. Next, to estimate the derivatives
of , they employ an high-gain observer. Both the works [21]
and [19] (the latter dealing with the larger class of stabilizable
systems) rely on the knowledge of to prove closed-loop
stability. In addition to this, the work in [1] proves that a sepa-
ration principle holds for a quite general class of nonlinear sys-
tems which includes (1) provided that is explicitly known
and that the system is uniformly completely observable. Some-
times however, even if it exists, cannot be explicitly calcu-
lated (see, e.g., the example in Section V) thus limiting the ap-
plicability of existing approaches. Hence, rather than estimating

and using to get , the approach adopted here is to
estimate directly using a nonlinear observer for (1) and using
the fact that the -states are known. The observer has the form1

(7)

1Throughout this section, we assume A1 to hold globally, since we are in-
terested in the ideal convergence properties of the state estimates. In the next
section, we will show how to modify the observer equation in order to achieve
the same convergence properties when A1 holds over the setO � � .

where is a vector, , and
is a fixed design constant.

Notice that (7) does not require any knowledge of and
has the advantage of operating in-coordinates. The observ-
ability assumption A1 implies that the Jacobian of the map-
ping with respect to is invertible, and hence the inverse
of in (7) is well defined. In the work [2], the au-
thors used an observer structurally identical to (7) for the more
restrictive class of input-output feedback linearizable systems
with full relative degree. Here, by modifying the definition of
the mapping and by introducing a dynamic projection, we
considerably relax these conditions by just requiring the general
observability assumption A1 to hold. Furthermore, we propose
a different proof than the one found in [2] which clarifies the
relationship among (7) and the high-gain observers commonly
found in the literature.

Theorem 1: Consider system (2) and assume that A1 is sat-
isfied for , the state belongs to a positively in-
variant, compact set , , and that there exists
a set , , which is positively invariant for and
such that is a compact set. Choose

such that is Hur-
witz.

Under these conditions and using observer (7), the following
two properties hold.

i) Asymptotic stability of the estimation error: There exists
, , such that for all

, and all , as .
ii) Arbitrarily fast rate of convergence: For each positive

, there exists , , such that for all
, .

In Section IV, we show that, by applying to the vector fielda
suitable dynamic projection onto a fixed compact set, the exis-
tence of the compact positively invariant setis guaranteed.

Proof: Consider the smooth coordinate transformation

which maps (1) to

(8)

where and are smooth functions and the pair
is in Brunovsky canonical form. Similarly, it is not

difficult to show that the coordinate transformation

maps the observer dynamics (7) to

(9)

Define the observer error in the new coordinates, .
Then, the observer error dynamics are given by

(10)

where . Note that, in coordinates, the ob-
server (7) is almost identical to the standard high-gain observer
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used in, e.g., [19] with animportant difference:while and in
[19]dependon [where denotes thesaturation func-
tion] and, hence, the nonlinear portion of the observer error dy-
namics is globally bounded when , and in (10)
do not contain saturation and, thus, one cannot guarantee global
boundedness of the last term in (10). Since our observer operates
in coordinates, saturationcannot be inducedin coordinates
and therefore, without any further assumption, we cannot prove
stability of the origin of (10). The assumption concerning the ex-
istence of addresses precisely this issue since it guarantees that

is contained in a compact set for all .
Define the coordinate transformation

(11)

In the new coordinates the observer error dynamics are given by

(12)

where, by assumption, is Hurwitz. Let be the so-
lution to the Lyapunov equation

(13)

and consider the Lyapunov function candidate .
Calculate the time derivative of along the trajectories

(14)

Since for all , we have that
and, hence, for all ,

which, by assumption, is
a compact set. This, together with the fact that, for all ,

and , implies that there exists
a fixed scalar , independent of , such that the time
derivative of can be bounded as

(15)
Defining , we conclude that, for all

, the origin of (12) [and, hence, also the origin of
(10)] is asymptotically stable which, by the smoothness of,
implies that as . This concludes the proof
of part i).

As for part ii), note that

since . Next

since . Therefore

Define so that implies that
(the smoothness of guarantees that is well-de-
fined). By the aforementioned inequality, we have

that implies that , and
. More-

over, from (15)

Therefore, by the comparison lemma (see, e.g., [22]), sat-
isfies the following inequality:

(16)

which, for sufficiently small , can be written as

An upper estimate of the time such that
(and, thus, ) for all , is calculated as
follows:

for all . Noticing that
as , we conclude that can be made arbitrarily

small by choosing a sufficiently small , thus concluding the
proof of part ii).

Remark 4: Using inequality (16), we find the upper bound
for the estimation error in -coordinates

(17)

Hence,during the initial transient, mayexhibit peaking,and
the size of the peak grows larger asdecreases and the conver-
gence rate is made faster. Refer to [18] for more details on the
peaking phenomenon and to [3] for a study of its implications on
output feedback control. The analysis in the latter paper shows
thatawaytoisolatethepeakingof theobserverestimatesfromthe
system states is to saturate the control input outside of the com-
pactsetof interest.Thesameideahas thenbeenadopted inseveral
otherworks in theoutput feedbackcontrol literature(see,e.g., [3],
[9], [19], [12]–[14], [7], and [1]). Rather than following this ap-
proach, in thenextsectionwewillpresentanewtechniquetoelim-
inate(rather than just isolate) the peaking phenomenon which al-
lows for the use of the weaker assumption A1.

IV. OUTPUT FEEDBACK STABILIZING CONTROL

Consider system (3), by using assumption A2 and Remark
2 we conclude that there exists a smooth stabilizing control

which makes the origin of (3) an asymp-
totically stable equilibrium point with domain of attraction.
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Fig. 1. Mechanism behind the observer estimates projection.

Fig. 2. DomainsC , C , C violate some of the requirements i)–iv) in A3, whileC does not.

By the converse Lyapunov theorem found in [11], there exists a
continuously differentiable function defined on satisfying,
for all ,

(18)

(19)

(20)

where , are class functions (see [8] for a defi-
nition), and stands for the boundary of the set. Given any
scalar , define

Clearly, for all and, from (19), becomes
arbitrarily close to as . Next, the following assumption
is needed.

Assumption A3 (Topology of): Assume that there exists a
constant and a set such that

(21)

where has the following properties.

i) The boundary of , , is an dimensional, sub-
manifold of , i.e., there exists a function
such that , and

on .
ii) is convex for all .
iii) 0 is a regular value of for each fixed , i.e.,

for all , .
iv) is compact.
Remark 5: See Fig. 1 for a pictorial representation of con-

dition (21). This assumption requiresin primis that there ex-

ists a set in coordinates which contains the image under
of a level set of the Lyapunov function and is contained
in the image under of the observable set . This guarantees
in particular that , and thus, when the state feedback
controller is employed, the phase curves leaving fromnever
exit the observable region . Furthermore, it is required that

possesses some basic topological properties: It is asked that
the boundary of be continuously differentiable [part i)], every
slice of obtained by holding constant at , , is convex
[part ii)], the normal vector to each slice (which is given by

) does not vanish anywhere on the slice [part
iii)] and, finally, it is asked that the setis compact in the di-
rection [part iv)]. Part iv) can be replaced by the slightly weaker
requirement that is compact ( is defined in the next
section), with minor changes in the analysis to follow.

To further clarify the topology of the domains under consid-
eration, consider the sets to in Fig. 2, corresponding to the
case , . While they all satisfy part i), does not
satisfy part ii) since its slices alongare not convex. satisfies
part ii) but violates requirement iii) because the normal vector
to one of the slices has no components in thedirection.
satisfies parts i)–iii) but violates iv) since the area of its slices
grows unbounded as . satisfies all the aforementioned
requirements.

Note that, when the plant is UCO (and, thus, )
and , A3 is always satisfied by a suffi-
ciently large set and any . In order to see that, pickany

and choose to be any cylinder ,
where , containing . The existence of is guar-
anteed by the fact that the set is bounded. More gener-
ally, the same holds when is not all of and

is convex for all .
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Finally, notice that when the plant innotUCO but
, where is an open set which is not all of , and the

origin is globally stabilizable (i.e., A2 holds globally), one can
choose , where isanyconvex compact set
with smooth boundary contained in and containing the point

(i.e., the origin in coordinates). The scalaris then
the largest number such that (notice, however, that
does not need to be known for design purposes). Consequently,
in the particular case when (and hence the control input
does not affect the mapping) and A2 holds globally, one can
choose , where is defined above.

A. Observer Estimates Projection

As we already pointed out in Remark 4, in order to isolate the
peaking phenomenon from the system states, the approach gen-
erally adopted in several papers is to saturate the control input
to prevent it from growing above a given threshold. This tech-
nique, however, does not eliminate the peak in the observer esti-
mate and, hence, cannot be used to control general systems like
the ones satisfying assumption A1, since even when the system
state lies in the observable region , the observer
estimates may enter the unobservable domain where (7) is not
well-defined. It appears that in order to deal with systems that
are not completely observable, one has to eliminate the peaking
from the observer by guaranteeing its estimates to be confined
in a prespecified observable compact set.

A common procedure used in the adaptive control literature
(see [4]) to confine vectors of parameter estimates within a de-
sired convex set is gradient projection. This idea cannot be di-
rectly applied to our problem, mainly becauseis not propor-
tional to the gradient of the observer Lyapunov function and,
thus, the projection cannot be guaranteed to preserve the conver-
gence properties of the estimate. Inspired by this idea, however,
we propose a way to modify the vector fieldwhich confines

to within a prespecified compact set while preserving its con-
vergence properties.

Recall the coordinate transformation defined in (4) and let

(22)

where is the state of theprojectedobserver defined as2

if and

otherwise
(23)

where

2The projection defined in (23) is discontinuous in the variableŷ , therefore
raising the issue of the existence and uniqueness of its solutions. We refer the
reader to Remark 7, were this issue is addressed and a solution is proposed.

represent the and components of the normal vector
to the boundary of at , i.e.,

(the function is defined in A3).
Further, and are the Lie derivatives of and

along the vector fields
and , respectively, i.e.,

and , where denotes the matrix
square root of [defined in (13)].

The dynamic projection (23) is well-defined since A3, part
iii), guarantees that does not vanish (see also Remark 5).
The following lemma shows that (23) guarantees boundedness
and preserves convergence of.

Lemma 1: If A3 holds and (23) is used:
i) Positive invariance of : if

, then for all .
If, in addition, for all and the as-

sumptions of Theorem 1 are satisfied, then the following prop-
erty holds for the integral curves of the projected observer dy-
namics (7), (23).

ii) Preservation of original convergence characteristics: prop-
erties i) and ii) established by Theorem 1 remain valid for.

Proof: We begin by introducing another coordinate trans-
formation, , (similarly, let ,

), letting , and letting be the

image of the set under the linear map, i.e.,
. Let , be the

and components of the normal vector to the boundary of.
The reader may refer to Fig. 1 for a pictorial representation of the
sets under consideration. In order to prove part i) of the Lemma,
we have to show that the projection (23) rendersa positively
invariant set for . The coordinate transformation (22) maps
(23) to

(24)

if and

otherwise.

(25)

In order to relate and to and
, recall from A3 that the boundary ofis expressed as

the set and hence the boundary
of is the set . From
this definition we find the expression of and as



1128 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003

The expression of the projection (23) incoordinates is found
by noting that

if and

otherwise

(26)

and then substituting , , and
, to find that

if

and

otherwise.
(27)

Next, we show that the boundary of the domainis positively
invariant with respect to (27). In order to do that, consider the
continuously differentiable function and
calculate its time derivative along the vector field of (27) when

Since is positively invariant, so is and, therefore, .
The proof of part ii) is based on the knowledge of a

Lyapunov function for the observer in coordinates [see
(11)]. Letting , we have that, in new coordinates,

. Now let
be a Lyapunov function candidate for the projected observer
error dynamics in transformed coordinates and recall that, by
assumption, and, thus, . The latter
fact implies that or, what is the same, .
From (27), when is in the interior of , or is
on the boundary of and (i.e.,
theunprojectedupdate is pointed to the interior of), we have
that . Let us now consider all remaining cases,
i.e., and

(28)

where

is nonnegative since, by assumption

Using the fact that and that lies on the
boundary of , we have that the difference vector
points outside of or, equivalently, points outside of the
slice . Using the definition of ,
we have that the set is the image of the convex compact set

, defined in A3, under the linear map and is, therefore,
compact and convex as well. Combining these two facts we have
that , thus proving that , which
concludes the proof of part ii).

Remark 6: Part i) of Lemma 1 implies that, with dynamic
projection, the requirement in Theorem 1 that there exists a pos-
itively invariant set for is satisfied with .
To see that, note that

and, thus

which, by part iv) in A3, is a compact set.
Remark 7: In order to avoid the discontinuity in the

right-hand side of (23) one can employ the smooth projection
idea introduced in [15]. In this case, (21) in A3 should be
replaced by the following:

(29)

where and satisfy properties i)–iv) in A3 and
, . The

ratio in (23) should be multiplied by, and
a slight modification of Lemma 1 would show that, by applying
the smooth projection to, the set (rather than the set

) is made positively invariant.
Remark 8: From the proof of Lemma 1, we conclude that

(23) confines within the set which is, in gen-
eral, unknown since we do not know , and is generallynot
convex (see Fig. 1). It is interesting to note that applying a stan-
dard gradient projection for over an arbitrary convex domain
does not necessarily preserve the convergence result ii) in The-
orem 1.

B. Closed-Loop Stability

To perform output feedback control we replace the state feed-
back law with which, by the smooth-
ness of and the fact that is guaranteed to belong to ,
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is bounded provided thatis confined to within a compact set.
In the following we will show that makes the origin of (3)
asymptotically stable and that is contained in its region of
attraction, for all .3 The proof is divided in three
steps.

1) (Lemma 2). Invariance of and uniform ultimate
boundedness:Using the arbitrarily fast rate of conver-
gence of the observer [see part ii) in Theorem 1], we
show that any phase curve leaving from cannot exit
the set and converges in finite time to an arbitrarily
small neighborhood of the origin. Here, Lemma 1 plays
an important role, in that it guarantees that the peaking
phenomenon is eliminated and thus it does not affect,
allowing us to use the same idea found in [3] to prove
stability.

2) (Lemma 3).Asymptotic stability of the origin:By using
Lemma 2 and the exponential stability of the observer es-
timate, we prove that the origin of the closed-loop system
is asymptotically stable.

3) (Theorem 2).Closed-loop stability:Finally, by putting
together the results of Lemma 2 and 3, we conclude the
closed-loop stability proof.

The arguments of the proofs are relatively standard (see, e.g.,
[1] and [19]) and so are sketched.

Lemma 2: For all , and such that

there exists a number such that, for all ,
for all , where

the phase curves of the closed-loop system remain con-
fined in , the set is positively invariant, and is
reached in finite time.

Sketch of the Proof:Since , by
Lemma 1, part i), for all . Let

and notice that

and

which is a compact set independent of. Hence, there exists a
bounded positive real number independent of such that, for
all and all ,

Therefore, for all such that , ,
proving that the exit time from the set has a positive
lower bound, , independent of . Further, letting

, it is readily

3Recall thatc is a positive constant satisfying A3 and hence its size is con-
strained by the topology of the observable setO.

seen that . We have, thus,
shown that for any phase curve leaving from the set

there exists a uniform lower bound to the exit time
from which is independent of. Choose , let

, and be the Lipschtiz constant of
over the compact set

By A3, implies and thus
from Theorem 1, part ii), and Lemma 1 there exists
such that, for all , for all

. Now, using the function defined in (18)–(20), a stan-
dard Lyapunov analysis shows that, for all

which, since , implies that is positively invariant
( ), and that the phase curves enter and stay in
the set in finite time.

Remark 9: The use of the projection for the observer estimate
plays a crucial role in the proof of Lemma 2. Asis made
smaller, the observer peak may grow larger, thus generating a
large control input, which in turn might drive the system states

outside of in shorter time. The dynamic projection makes
sure that the exit time is independent of, thus allowing one
to choose independently of .

Lemma 3: Under the assumptions of Lemma 2, there exists a
positive scalar such that for all the origin

is asymptotically stable.
Sketch of the Proof:Let . By (17) and

Lemma 1, the origin of the dynamics is exponentially
stable. Recalling that , from
the smoothness of we conclude that the origin of the dy-
namics is exponentially stable as well. By the converse Lya-
punov theorem there exists a Lyapunov function , a pos-
itive number , and positive constants such that, for
all

Choose such that . For
any , choose as in Lemma 2 and pick any .
Then, the following Lyapunov function:

readily allows one to conclude that the origin
is asymptotically stable.

We are now ready to state the following closed-loop stability
theorem.

Theorem 2: Suppose that assumptions A1, A2, and A3 are
satisfied. Then, for the closed-loop system (3), (7), (23), with
control law , there exists a scalar such
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that, for all , the set is contained in the region of
attraction of the origin .

Sketch of the Proof:By Lemma 3, there exists
such that, for all , the origin is
asymptotically stable. Let be its domain of attraction. For
any , use Lemma 2 to find so
that for all the phase curves of the closed-loop system
enter in finite time.

Remark 10: Theorem 2 proves regional stability of the
closed-loop system, since given an observability domain,
and provided A3 is satisfied, the control law, together with
(7) and (23), make the compact setan estimate of the domain
of attraction for the origin of the closed-loop system. The
difference between Theorem 2 and a local stability result lies
in the fact that here the domain of attraction foris at least as
large as and not restricted to be a smallunknownneighbor-
hood of the origin. Further, the size of is independent of
and thus the domain of attractiondoes notshrink as the rate
of convergence of the observer is made faster (that is, when

). The next corollary gives conditions for the recovery
of the domain of attraction of the state feedback controller by
output feedback.

Corollary 1: Assume that A1 is satisfied on ,
is convex for all , and A2 holds. Then,

givenanyset , there exists a scalar such
that, for all , the set is contained in the region of
attraction of the origin . Moreover, if , the
origin is semiglobally asymptotically stable.

Proof: By property (19) of the Lyapunov function ,
given any set , there exists such that

. By Remark 5, if , A3 is satisfied byany
and a sufficiently large . Choose . By Theorem

2 we conclude that there exists such that, for all
, the origin of the closed-loop system is asymptot-

ically stable and the set ,
is contained in its domain of attraction.

Thus, in particular, is contained in the domain of attraction
of . If then can be chosen to be any
compact set and thus the origin is semiglobally asymp-
totically stable.

Remark 11: A drawback of the result in Theorem 2, shared
by the works in [21], [19], and [1], is that separation is achieved
between the observer design and the state feedback control
design for theaugmentedsystem (3). In order to avoid increased
complexity of the controller, it would be more desirable to
achieve separation between the observer design and the state
feedback control design for theoriginal system (1).

Remark 12: As mentioned in Remark 5, if the plant is UCO
(and hence ) and is a convex set
for all , assumption A3 is automatically satisfied by a
sufficiently large cylindrical set . Even in this case, if is
not explicitly known and one wants to directly estimate the state
of the plant, one should employ the dynamic projection (23)
since the standard saturation used, e.g., in [3] and [19] can only
be applied to a high-gain observer in coordinates. Clearly,
the only instance when dynamic projection can be replaced by
saturation of the observer estimates is when the observability
mapping is the identity.

V. EXAMPLE

Consider the following input–output linearizable system:

(30)

The control input appears in the first derivative of the output

Notice, however, that the coefficient multiplying vanishes
when , and hence system (30) does not have a well-de-
fined relative degree everywhere. Sinceappears in , we have
that , therefore, we add one integrator at the input side

(31)

The mapping is given by

(32)

The first equation in (32) is invertible for all , and its
inverse is given by . Substituting into the second
equation in (32) and isolating the term in, we get

(33)

Since is a strictly increasing function, it fol-
lows that (33) is invertible for all , however, an analyt-
ical solution to this equation cannot be found. In conclusion,
Assumption A1 is satisfied on the domain

, but an explicit inverse is not
known. The fact that system (30) is not UCO, together with the
nonexistence of an explicit inverse to (32), prevents the applica-
tion of the output feedback control approaches in [3], [21], [9],
[19], [12], [13], [7], [14], and [1].

To find a stabilizing state feedback controller, note that the
extended system (30), (31) can be feedback linearized by letting

and rewriting the system in

new coordinates :

(34)

Choose , where
, so that the closed-loop system becomes
with poles placed at 1. Then, the origin

is a globally asymptotically equilibrium point of (34), and As-
sumption A2 is satisfied with . Let be the solution
of the Lyapunov equation associated to , so that a
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Lyapunov function for system (34) is , and any set
, with , is contained in the

region of attraction for the origin. Equation (35) is shown at the
bottom of the page.

Next, we seek to find a set satisfying Assumption A3. To
this end, notice that

Next recall from Remark 5 that, since A2 holds globally,can
be chosen to be the cylinder , where is any compact
convex set in the upper half plane containing
the point . For the sake of simplicity choose

to be the disk of radius centered at , so that
, and , as depicted

in Fig. 3. We stress that our choice is quite conservative and is
made exclusively for the sake of illustration. Oncehas been
chosen, the control design is complete and the output feedback
controller is given by

(36)

where is the solution of (23) with defined in
(35) and

(37)

Using controller (37), Theorem 2 guarantees that the origin
of the closed-loop system is asymptotically stable

and it provides an estimate of its domain of attraction.
Specifically, given any positive scalar , there exists

such that is contained in the domain of attraction
for all . In what follows we will find the set

satisfying A3. Recalling that, in -coordinates, is
expressed as , we have that
implies , , and hence

. Now

Fig. 3. Projection domainC.

let and note that, for all ,

Next, we seek to find such that . Using the inequal-
ities above we have that if , where is
the largest scalar satisfying

(38)

(note that satisfying the inequality above always exists)
then and, hence, satisfies A3.

For our simulations we choose and, from (38), we
get . The initial condition of the extended system is
set to [or

], which is contained inside so that Theorem 2 can be
applied. Finally, we choose the observer gainto be ,

(35)
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(a)

(b)

Fig. 4. Integral curve of the closed-loop system under output feedback. (a)
� = 0:2. (b) � = 0:05.

so that its associated polynomial is Hurwitz with both poles
placed at 2. We present four different situations to illustrate
four features of our output feedback controller.

1) Arbitrary fast rate of convergence of the observer.
Fig. 4 shows the evolution of the integral curve , as
well as the control input , for and .
The convergence in the latter case is faster, as predicted
by Theorem 1 (see Remark 4).

2) Observer estimate projection. Fig. 5 shows the evolu-
tion of and for with and without projec-
tion. The dynamic projection successfully eliminates the
peak in the observer states, thus yielding a bounded con-
trol input, as predicted by the result of Lemma 1. Fig. 6
shows that the phase curve is contained
within the set for all , confirming the result of
Lemma 1. In particular, Fig. 6 shows the operation of the
projection when the phase curve of the observer (in
coordinates) hits the boundary of: it forces to

Fig. 5. Observer states during the initial peaking phase with and without
projection,� = 10 .

Fig. 6. Phase curve of the observer with dynamic projection in the transformed
domainY = F(X).

“slide” along the boundary of and preserves its conver-
gence characteristics. This is equivalent, in thedomain,
to saying that the phase curve slides along
the boundary of and converges to .

3) Observer estimate projection and closed-loop sta-
bility . In Fig. 7 a phase plane plot for is shown
with and without observer projection when .
The small value of generates a significant peak which,
if projection is not employed, drives the phase curve
of the output feedback system away form that of the
state feedback system and, in general, may drive the
system to instability (see Remark 9). On the other hand,
using dynamic projection, the phase curve of the output
feedback system is almost indistinguishable from the
phase curve of the state feedback system.

4) Trajectory recovery. The evolution of the phase curve
for decreasing values of, in Fig. 8, shows that the

phase curve of the output feedback system approaches
the phase curve of the state feedback one as (see
Remark 11).
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Fig. 7. Phase curvex(t) with and without projection,� = 10 .

Fig. 8. Phase curveX(t) of the closed-loop system for decreasing values of�.
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